• Title/Summary/Keyword: pulse current plating

Search Result 43, Processing Time 0.023 seconds

Study on the Relationship between Concentration of JGB and Current Density in TSV Copper filling (TSV 구리 필링 공정에서 JGB의 농도와 전류밀도의 상관 관계에 관한 연구)

  • Jang, Se-Hyun;Choi, Kwang-Seong;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.99-104
    • /
    • 2015
  • The requirement for success of via filling is its ability to fill via holes completely without producing voids or seams. Defect free via filling was obtained by optimizing plating conditions such as current mode, current density and additives. However, byproducts stemming from the breakdown of these organic additives reduce the lifetime of the devices and plating solutions. In this study, the relationship between JGB and current density on the copper via filling was investigated without the addition of other additives to minimize the contamination of copper via. AR 4 with $15{\mu}m$ diameter via were used for this study. The pulse current was used for the electroplating of copper and the current densities were varied from 10 to $20mA/cm^2$ and the concentrations of JGB were varied from 0 to 25 ppm. The map for the JGB concentration and current density was developed. And the optimum conditions for the AR 4 via filling with $15{\mu}m$ diameter were obtained.

TSV Filling Technology using Cu Electrodeposition (Cu 전해도금을 이용한 TSV 충전 기술)

  • Kee, Se-Ho;Shin, Ji-Oh;Jung, Il-Ho;Kim, Won-Joong;Jung, Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.11-18
    • /
    • 2014
  • TSV(through silicon via) filling technology is making a hole in Si wafer and electrically connecting technique between front and back of Si die by filling with conductive metal. This technology allows that a three-dimensionally connected Si die can make without a large number of wire-bonding. These TSV technologies require various engineering skills such as forming a via hole, forming a functional thin film, filling a conductive metal, polishing a wafer, chip stacking and TSV reliability analysis. This paper addresses the TSV filling using Cu electrodeposition. The impact of plating conditions with additives and current density on electrodeposition will be considered. There are additives such as accelerator, inhibitor, leveler, etc. suitably controlling the amount of the additive is important. Also, in order to fill conductive material in whole TSV hole, current wave forms such as PR(pulse reverse), PPR(periodic pulse reverse) are used. This study about semiconductor packaging will be able to contribute to the commercialization of 3D TSV technology.

Electroplating of Copper Using Pulse-Reverse Electroplating Method for SiP Via Filling (펄스-역펄스 전착법을 이용한 SiP용 via의 구리 충진에 관한 연구)

  • Bae J. S.;Chang G H.;Lee J. H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.129-134
    • /
    • 2005
  • Electroplating copper is the important role in formation of 3D stacking interconnection in SiP (System in Package). The I-V characteristics curves are investigated at different electrolyte conditions. Inhibitor and accelerator are used simultaneously to investigate the effects of additives. Three different sizes of via are tested. All via were prepared with RIE (reactive ion etching) method. Via's diameter are 50, 75, $100{\mu}m$ and the height is $100{\mu}m$. Inside via, Ta was deposited for diffusion barrier and Cu was deposited fer seed layer using magnetron sputtering method. DC, pulse and pulse revere current are used in this study. With DC, via cannot be filled without defects. Pulse plating can improve the filling patterns however it cannot completely filled copper without defects. Via was filled completely without defects using pulse-reverse electroplating method.

  • PDF

Effective Cu Filling Method to TSV for 3-dimensional Si Chip Stacking (3차원 Si칩 실장을 위한 효과적인 Cu 충전 방법)

  • Hong, Sung Chul;Jung, Do Hyun;Jung, Jae Pil;Kim, Wonjoong
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.152-158
    • /
    • 2012
  • The effect of current waveform on Cu filling into TSV (through-silicon via) and the bottom-up ratio of Cu were investigated for three dimensional (3D) Si chip stacking. The TSV was prepared on an Si wafer by DRIE (deep reactive ion etching); and its diameter and depth were 30 and $60{\mu}m$, respectively. $SiO_2$, Ti and Au layers were coated as functional layers on the via wall. The current waveform was varied like a pulse, PPR (periodic pulse reverse) and 3-step PPR. As experimental results, the bottom-up ratio by the pulsed current decreased with increasing current density, and showed a value of 0.38 on average. The bottom-up ratio by the PPR current showed a value of 1.4 at a current density of $-5.85mA/cm^2$, and a value of 0.91 on average. The bottom-up ratio by the 3-step PPR current increased from 1.73 to 5.88 with time. The Cu filling by the 3-step PPR demonstrated a typical bottom-up filling, and gave a sound filling in a short time.

High Speed Cu Filling Into TSV by Pulsed Current for 3 Dimensional Chip Stacking (3차원 실장용 TSV의 펄스전류 파형을 이용한 고속 Cu도금 충전)

  • Kim, In Rak;Park, Jun Kyu;Chu, Yong Cheol;Jung, Jae Pil
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.667-673
    • /
    • 2010
  • Copper filling into TSV (through-silicon-via) and reduction of the filling time for the three dimensional chip stacking were investigated in this study. A Si wafer with straight vias - $30\;{\mu}m$ in diameter and $60\;{\mu}m$ in depth with $200\;{\mu}m$ pitch - where the vias were drilled by DRIE (Deep Reactive Ion Etching) process, was prepared as a substrate. $SiO_2$, Ti and Au layers were coated as functional layers on the via wall. In order to reduce the time required complete the Cu filling into the TSV, the PPR (periodic pulse reverse) wave current was applied to the cathode of a Si chip during electroplating, and the PR (pulse-reverse) wave current was also applied for a comparison. The experimental results showed 100% filling rate into the TSV in one hour was achieved by the PPR electroplating process. At the interface between the Cu filling and Ti/ Au functional layers, no defect, such as a void, was found. Meanwhile, the electroplating by the PR current showed maximum 43% filling ratio into the TSV in an hour. The applied PPR wave form was confirmed to be effective to fill the TSV in a short time.

Copper Via Filling Using Organic Additives and Wave Current Electroplating (유기물 첨가제와 펄스-역펄스 전착법을 이용한 구리 Via Filling에 관한 연구)

  • Lee, Suk-Ei;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.3
    • /
    • pp.37-42
    • /
    • 2007
  • Copper deposition studies have been actively studied since interests on 3D SiP were increased. The defects inside via can be easily formed due to the current density differences on entrance, bottom and wall of via. So far many different additives and current types were discussed and optimized to obtain void-free copper via filling. In this research acid cupric sulfate plating bath containing additives such as PEG, SPS, JGB, PEI and wave current applied electroplating were examined. The size and shape of grain were influenced by the types of organic additives. The cross section of specimen were analyzed by FESEM. When PEI was added, the denser copper deposits were obtained. Electroplaing time was reduced when 2 step via filling was employed.

  • PDF

A Study on the Antibacterial Properties of Ag Electropulsed Anodized Aluminium Alloy (Pulse도금법에 의한 Ag주입 양극산화 알루미늄 합금의 항균특성에 관한 기초연구)

  • Lim, Ki-Young;Ki, Joon-Seo;Jang, Yong-Seok;Lee, Woo-Min;Yoon, Jeong-Mo
    • Korean Journal of Materials Research
    • /
    • v.16 no.10
    • /
    • pp.639-646
    • /
    • 2006
  • Over the last two decades, microbiologically influenced corrosion (MIC) of metallic materials has received considerable attention due to its serious effects on industrial field. In this context, it is important to devise control methods which inhibit biofilm formation on various metallic compounds and are compatible with environment. It was change of various conditions (duty cycle, current density, $AgNO_3$ concentration and pH) for injection of Ag particles in anodized Aluminum alloy pore using pulsed current. Optimal condition was obtained by means of FE-SEM, ICP analysis etc. The antibacterial metal's specimen were manufactured under optimal condition and this specimen were tested the antibacterial characterization and anticorrosion characterization. In result of test, we can confirmed that the antibacterial characterization and anticorrosion characterization of the specimens of injected Ag particles in anodized Aluminum alloy pore using pulsed current were better than the anodized Aluminum alloy specimens.

The Effect of Electroplating Parameters on the Compositions and Morphologies of Sn-Ag Bumps (Sn-Ag 범프의 조성과 표면 형상에 영향을 미치는 도금 인자들에 관한 연구)

  • Kim, Jong-Yeon;Yoo, Jin;Bae, Jin-Soo;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.4
    • /
    • pp.73-79
    • /
    • 2003
  • With the variation of Ag concentration in bath, current density, duty cycle, additive and agitation for electroplating of Sn-Ag solder, the compositions and the morphologies of solder were studied. It was possible to controll Ag content in Sn-Ag solder by varying Ag concentration in bath and current density. The microstructure size of Sn-Ag solder decreased with increasing current density. Duty cycle of pulse electroplating and quantity of additive affected on Ag content of deposit and surface roughness. In this work eutectic Sn-Ag solder bumps with fine pitch of 30 $\mu\textrm{m}$ and height of 15 $\mu\textrm{m}$ was formed successfully. The Ag content of electrodeposited solder was confirmed by EDS and WDS analyses and the surface morphologies was analyzed by SEM and 3D surface analyzer.

  • PDF

Study on Thermoelectric Properties of Cu Doping of Pulse-Electrodeposited n-type Bi2(Te-Se)3 Thin Films (펄스 전기도금법에 의해 제조된 n형 Bi2(Te-Se)3 박막의 Cu 도핑에 따른 열전특성에 관한 연구)

  • Heo, Na-Ri;Kim, Kwang-Ho;Lim, Jae-Hong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.40-45
    • /
    • 2016
  • Recently, $Bi_2Te_3$-based alloys are the best thermoelectric materials near to room temperature, so it has been researched to achieve increased figure of merit(ZT). Ternary compounds such as Bi-Te-Se and Bi-Sb-Te have higher thermoelectric property than binary compound Bi-Te and Sb-Te, respectively. Compared to DC plating method, pulsed electrodeposition is able to control parameters including average current density, and on/off pulse time etc. Thereby the morphology and properties of the films can be improved. In this study, we electrodeposited n-type ternary Cu-doped $Bi_2(Te-Se)_3$ thin film by modified pulse technique at room temperature. To further enhance thermoelectric properties of $Bi_2(Te-Se)_3$ thin film, we optimized Cu doping concentration in $Bi_2(Te-Se)_3$ thin film and correlated it to electrical and thermoelectric properties. Thus, the crystal, electrical, and thermoelectric properties of electrodeposited $Bi_2(Te-Se)_3$ thin film were characterized the XRD, SEM, EDS, Seebeck measurement, and Hall effect measurement, respectively. As a result, the thermoelectric properties of Cu-doped $Bi_2(Te-Se)_3$ thin films were observed that the Seebeck coefficient is $-101.2{\mu}V/K$ and the power factor is $1412.6{\mu}W/mK^2$ at 10 mg of Cu weight. The power factor of Cu-doped $Bi_2(Te-Se)_3$ thin film is 1.4 times higher than undoped $Bi_2(Te-Se)_3$ thin film.

Application of Pulse Current Electrolysis to the Large Scale of Copper and Aluminium Substrates for Solar Selective Coatings on Solar Collectors (실 규모 태양열 집열판 제작을 위한 구리 및 알루미늄 기판에의 태양광 선택흡수박막 전착;Pulse Current Electrolysis 적용)

  • 이태규;김동형;김형택;여운택
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.108-114
    • /
    • 1996
  • It is one of the most important factors to enhance the efficiency of the solar collectors by in-creasing collecting efficiency and decreasing heat loss. The pulse electrodeposition method has been involved in this study to improve characteristics of the solar selective coating on 230cm${\times}$60cm substrates and electrical efficiency of the process. The composition of the electrolyte was 280 g/$\ell$ chromic acid, 15 g/$\ell$ propionic acid, and 10 g/$\ell$ appropriate additive. 230cm${\times}$60cm copper and aluminium sheets were utilized as the substrates. It has been observed that the black chrome coatings exhibited reasonable optical properties for commercialization when the plating parameters were properly controlled; the absorptance was 0.98 and 0.97 and omittance was 0.17 and 0.23 for copper and aluminium substrate, respectively. This study implies that the pulse current electrolysis method could be applied to the large scale substrates, and the various products can be avilable after the consideration of the thermal conductivity, heat transfer efficiency and cost problems of the substrates.

  • PDF