• Title/Summary/Keyword: pseudomonas putida

Search Result 298, Processing Time 0.025 seconds

A Study on Suppression Components of Spoiling Ginseng (수삼부패억제 활성물질 선발연구)

  • Seon Hyun-Joo;Joo In-Sun;Sung Chang-Keun
    • Journal of Ginseng Research
    • /
    • v.23 no.2 s.54
    • /
    • pp.67-73
    • /
    • 1999
  • This study carried out to scanning and select the antimicrobial pharmaceuticals which were suppress the rottening of fresh ginseng. We are isolated 20 kinds of microorganisms from rotten ginseng. In these of the microorganisms, five bacteria, fresh ginseng root-rottening, are identified to Pseudomonas putida, Pseudomonas putida biotype A, Bacillus spp, Enterobacter cloacae, and Klebsiella pneumoniae. Particularly. Bacillus spp was rapidly rotted the ginseng root, compared with the others. The antimicrobial activity were tested with 19 kinds of water extracts, and 34 kinds of essential oils. The water extract of Terminaliae Fructus, and Schiandra chinensis are strongly inhibited the growth of bacteria causing the ginseng root-rottening. And 5 kind of essential oils are inhibited bacteria. It was regarded that the water extract of Terminaliae Fructus has weekly water insoluble and polar antimicrobial components.

  • PDF

Restriction map of a cryptic plasmid from Pseudomonas putida (Pseudomonas putida로 부터 분리한 cryptic플라스미드의 제한효소지도)

  • 김훈규;고상균;이영록
    • Korean Journal of Microbiology
    • /
    • v.24 no.1
    • /
    • pp.7-11
    • /
    • 1986
  • We screened lysates of the laboratory strains of pseudomonads utilizing hydrocarbon by agarose gel electrophoresis and cesium chloride-ethidium bromide equilibrium centrifugation, to find an intrinsic plasmid as a vector and to examine the relationship between the plasmid and hydrocarbon degradation. Only one strain from the examined strains, Pseudomonas putida KU190, contained a plasmid. We named the plasmid pKU41. The molecular size of pKU41 was determined as 41kb, using covalently closed circular forms of RP4 and pSY343 as standard size markers. The restriction sites of pKU41 for BamHI, BglII, EcoRI, HindIII, and SalI were 3, 1, 3, 6 and more than 13, respectively. With double or triple digestion, restriction map of pKU41 was constructed for BamHI, BglII and HindIII. For elucidation on the biological function of the plasmid, test was conducted on the ability of hydrocarbon utilization of the host strain but no apparent relationship was observed.

  • PDF

Production of Polyhydroxyalkanoates from Sludge Palm Oil Using Pseudomonas putida S12

  • Kang, Du-Kyeong;Lee, Cho-Ryong;Lee, Sun Hee;Bae, Jung-Hoon;Park, Young-Kwon;Rhee, Young Ha;Sung, Bong Hyun;Sohn, Jung-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.990-994
    • /
    • 2017
  • Polyhydroxyalkanoates (PHAs) are biodegradable plastics produced by bacteria, but their use in diverse applications is prohibited by high production costs. To reduce these costs, the conversion by Pseudomonas strains of PHAs from crude sludge palm oil (SPO) as an inexpensive renewable raw material was tested. Pseudomonas putida S12 was found to produce the highest yield (~41%) of elastomeric medium-chain-length (MCL)-PHAs from SPO. The MCL-PHA characteristics were analyzed by gas-chromatography/mass spectrometry, gel permeation chromatography, and differential scanning calorimetry. These findings may contribute to more widespread use of PHAs by reducing PHA production costs.

Biodegradation of Naphthalene by Acinetobacter calcoaceticus R-88 (나프탈렌 분해균주의 분리 및 특성)

  • Ryu, Beung-Ho;Oh, Yun-Kun;Bae, Ki-Chul;Bin, Jae-Hoon
    • Applied Biological Chemistry
    • /
    • v.32 no.3
    • /
    • pp.315-320
    • /
    • 1989
  • Bacteria utilizing naphthalene as a sole carbon source for growth were isolated and identified and code named as Acinetobacter calcoaceticus R-88, Pseudomonas testosteroni R-87 and Pseudomonas putida R-89. Among these isolates, A. calcoaceticus R-88 found most effective in utilizing naphthalene. The optimal pH, temperature and concentration of naphthalene was 7.0, $30^{\circ}C$ and 10mM, respectively. The strain degraded naphthalene to salicylic acid as an intermediate. And the strain showed to be resistant to ampicillin, tetracyclin, chloramphenicol and kanamycin. A. calcoaceticus R-88 harbored plasmid DNA which was believed to be involved in naphthalene degradation.

  • PDF

Isolation and Characterization of Naturally Occuring Bacteria Carried TOL Plasmid (TOL 플라스미드 세균의 분리와 특성)

  • Nam, Cho-Byung;Cho, In-Sun;Rhee, Young-Ha;Ryu, Jae-Keun;Min, Kyung-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.321-326
    • /
    • 1989
  • Eighty two bacterial strains have been isolated from five different soil and sewage samples by selective enrichment culture on m-toluate minimal medium. Two of these were identified as Pseudomonas capacia, one as P. putida, one as Yersinia intermedia, and one as Flavobaeterium odoratum. P. cepacia SUB37 appeared to carry plasmid superficially similar to TOL plasmid previously described in p. putida mt-2 and other two plasmids from Flavobacterium odorutum and Y. intermedia larger than that of p. putida mt-2. p. cepacia SUB37 was sensitive to streptomycin but resistant to rifampicin. P. cepacia SUB37 carrying plasmid metabolizes the hydrocarbons to benzoate and toluates via the corresponding alcohols and aldehydes. By the curing experiment, it appears that P. cepacia SUB37 carries TOL plasmid encoding for the enzymes responsible for the catabolism of toluene and xylene via benzoate and the toluates and then by meta pathway in the process of degradation of aromatic hydrocarbons. p. cepacia SUB37 degraded m-toluate rapidly to be very low level when it was fully grown.

  • PDF

A newly isolated Klebsiella pneumoniae producing a thermostable stereo-selective esterase for production of D-β-acetylthioisobutyric acid (D-β-Acetylthioisobutyric acid 생산을 위한 내열성 광학선택적 esterase 활성 Klebsiella pneumoniae의 분리)

  • Chung, Yong-Joon
    • Korean Journal of Microbiology
    • /
    • v.55 no.2
    • /
    • pp.143-148
    • /
    • 2019
  • The synthesis of captopril as an important chiral drug in commerce needs expensive resolution process of racemic mixture. Microorganisms, producing a thermostable esterase that catalyzes the stereo-selective hydrolysis of methyl DL-${\beta}$-acetylthioisobutyrate (DL-ester) to D-${\beta}$-acetylthioisobutyric acid (DAT) were screened from soils. Among the strains tested, strain No CJ-317 and strain No CJ-187 with highest activity were selected as the best DAT producer. The newly isolated microorganisms were identified respectively, as Klebsiella pneumoniae and Pseudomonas putida. The cell activity of esterase from K. pneumoniae CJ-317 and P. putida CJ-187 were showed an optimal reaction activity at $75^{\circ}C$ and $60^{\circ}C$, respectively. Also the cell activity of K. pneumoniae CJ-317 was stable up to $80^{\circ}C$ for 1 h, while that of P. putida CJ-187 was not over $60^{\circ}C$. By varying the concentration of DAT in the reaction mixture, the cell activity of P. putida CJ-187 showed about 55% and 80% of product inhibition in the presence of 2.5% (w/v) and 5.0% of DAT respectively. K. pneumoniae CJ-317 had less product inhibition than P. putida CJ-187 by about 35% and 44% at the same concentrations respectively. The esterase of newly isolated K. pneumoniae CJ-317 could be useful for the stereo-selective hydrolysis of DL-ester to DAT.

In Vivo Expression Technology (IVET) and Its Application in Plant-Associated Bacteria

  • Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.18 no.2
    • /
    • pp.57-62
    • /
    • 2002
  • In vivo expression technology (IVET) has been developed to study bacterial gene expression in Salmonella typhimurium during host infection. The expression of selected genes by IVET has been elevated in vivo but not in vitro. The selected genes turned out to be important for bacterial virulence and/or pathogenicity. IVET depends on a synthetic operon with a promoterless transcriptional fusion between a selection marker gene and a reporter gene. The IVET approach has been successfully adapted in other bacterial pathogens and plant-associated bacteria using different selection markers. Pseudomonas putida suppresses citrus root rot caused by Phytophthora parasitica and enhances citrus seedling growth. The WET strategy was adapted based on a transcriptional fusion, pyrBC'-lacZ, in P. putida to study the bacterial traits important far biocontrol activities. Several genes appeared to be induced on P. parasitica hyphae and were found to be related with metabolism and regulation of gene expression. It is likely that the biocontrol strain took a metabolic advantage from the plant pathogenic fungus and then suppressed citrus root rot effectively. The result was parallel with those from the adaptation of IVET in P. fluorescens, a plant growth promoting rhizobacteria (PGPR). Interestingly, genes encoding components for type III secretion system have been identified as rhizosphere-induced genes in the PGPR strain. The type III secretion system may play a certain role during interaction with its counterpart plants. Application of IVET has been demonstrated in a wide range of bacteria. It is an important strategy to genetically understand complicated bacterial traits in the environment.

Enzymatic and Genetic Aspects of Glyoxalase I in Microorganisms (미생물에 있어서 글리옥살라아제 I의 효소학적, 유전학적 고찰)

  • 이해익
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.1
    • /
    • pp.103-108
    • /
    • 1990
  • The enzymatic studies on the methylglyoxal metabolism in yeast and bacterial cells indicated that organisms are equipped with the common and manifold systems for the detoxification of methylglyoxal. Among these systems, the glyoxalase I is the most important route for methylglyoxal detoxification. The molecular structure of glyoxalase I is apparently distinct from the enzyme sources, and zinc ion is an essential cofactor in enzyme activity. The gene for Pseudomonas putida glyoxalase I functioned as a scavenger of methylglyoxal and regulated the cell size of the bacterium. Comparison of the nucleotide sequence of the P. putida glyoxalase I gene with the N-terminal amino acid sequence of the purified enzyme revealed that the N-terminal methionine residue was removed after translation. Possible physiological role of glyoxalase I was also discussed.

  • PDF