DOI QR코드

DOI QR Code

A newly isolated Klebsiella pneumoniae producing a thermostable stereo-selective esterase for production of D-β-acetylthioisobutyric acid

D-β-Acetylthioisobutyric acid 생산을 위한 내열성 광학선택적 esterase 활성 Klebsiella pneumoniae의 분리

  • Chung, Yong-Joon (Department of Functional Food and Biotechnology, School of Medical Science, Jeonju University)
  • 정용준 (전주대학교 의과학대학 바이오기능성식품학과)
  • Received : 2019.05.23
  • Accepted : 2019.06.04
  • Published : 2019.06.30

Abstract

The synthesis of captopril as an important chiral drug in commerce needs expensive resolution process of racemic mixture. Microorganisms, producing a thermostable esterase that catalyzes the stereo-selective hydrolysis of methyl DL-${\beta}$-acetylthioisobutyrate (DL-ester) to D-${\beta}$-acetylthioisobutyric acid (DAT) were screened from soils. Among the strains tested, strain No CJ-317 and strain No CJ-187 with highest activity were selected as the best DAT producer. The newly isolated microorganisms were identified respectively, as Klebsiella pneumoniae and Pseudomonas putida. The cell activity of esterase from K. pneumoniae CJ-317 and P. putida CJ-187 were showed an optimal reaction activity at $75^{\circ}C$ and $60^{\circ}C$, respectively. Also the cell activity of K. pneumoniae CJ-317 was stable up to $80^{\circ}C$ for 1 h, while that of P. putida CJ-187 was not over $60^{\circ}C$. By varying the concentration of DAT in the reaction mixture, the cell activity of P. putida CJ-187 showed about 55% and 80% of product inhibition in the presence of 2.5% (w/v) and 5.0% of DAT respectively. K. pneumoniae CJ-317 had less product inhibition than P. putida CJ-187 by about 35% and 44% at the same concentrations respectively. The esterase of newly isolated K. pneumoniae CJ-317 could be useful for the stereo-selective hydrolysis of DL-ester to DAT.

라세믹체 형태의 전구물질 methyl DL-${\beta}$-acetylthioisobutyrate (DL-ester)로부터 captopril 합성과정의 중간물질로 알려져 있는 D-${\beta}$-acetylthioisobutyric acid (DAT)를 효율적으로 제조하기 위해 광학선택적 esterase활성을 가진 신규 미생물을 탐색하였고 활성이 우수한 균주 CJ-317과 균주 CJ-187을 선별하고 동정한 결과, 각각 Klebsiella pneumoniae와 Pseudomonas putida로 동정하였다. 두 균주가 생산하는 esterase의 최적 반응온도와 내열성을 조사한 결과, P. putida CJ-187와 K. pneumoniae CJ-317의 최적활성은 각각 $60^{\circ}C$$75^{\circ}C$이었으며 또한 P. putida CJ-187의 경우, $60^{\circ}C$까지 안정한 반면 K. pneumoniae CJ-317은 $80^{\circ}C$에서도 1시간 동안 안정된 내열성 효소의 특성을 보였다. DAT에 의한 최종 산물의 활성 저해도에 있어서도 P. putida CJ-187은 2.5%와 5%의 DAT에 대해 각각 55%와 80%의 저해활성을 보인 반면 K. pneumoniae CJ-317는 각각 35%와 44%의 낮은 저해활성을 보임으로서 K. pneumoniae CJ-317은 captopril 합성의 중간체인 DAT 제조과정에 유용하게 활용할 수 있는 우수한 내열성 광학선택적 esterase 활성을 가지는 신규 균주임을 확인하였다.

Keywords

MSMHBQ_2019_v55n2_143_f0001.png 이미지

Fig. 1. Enzymatic resolution of D-β-acetylthioisobutyric acid (DAT) from DL-β-acetylthioisobutyrate (DL-ester) for synthesis of captopril.

MSMHBQ_2019_v55n2_143_f0002.png 이미지

Fig. 2. Phylogenic tree based on 16S rRNA sequence of Klebsiella pneumoniae CJ-317.

MSMHBQ_2019_v55n2_143_f0003.png 이미지

Fig. 3. Residual esterase activity of the K. pneumoniae CJ-317 (○) and P. putida CJ-187 (●).

MSMHBQ_2019_v55n2_143_f0004.png 이미지

Fig. 4. Effects of reaction temperature on the esterase activity of K. pneumoniae CJ-317 (○) and P. putida CJ-187 (●).

MSMHBQ_2019_v55n2_143_f0005.png 이미지

Fig. 5. Effects of the concentration of D-β-acetylthioisobutyric acid (DAT) on the esterase activity of K. pneumoniae CJ-317 (○) and P. putida CJ-187 (●).

Table 1. Morphological and physiological characteristics of isolates

MSMHBQ_2019_v55n2_143_t0001.png 이미지

Table 2. Thermostability of esterases by various strains

MSMHBQ_2019_v55n2_143_t0002.png 이미지

References

  1. Chirumamilla RR, Marchant R, and Nigam P. 2001. Captopril and its synthesis from chiral intermediates. J. Chem. Technol. Biotechnol. 76, 123-127. https://doi.org/10.1002/jctb.337
  2. Cohen N, Eichel WF, Lopresti RJ, Neucom C, and Saucy G. 1976. Synthetic studies on (2R, 4'R, 8'R)-$\alpha$-tocopherol, an approach utilizing side chain synthons of microbiological origin. J. Org. Chem. 41, 3505-3511. https://doi.org/10.1021/jo00884a002
  3. Cushman DW, Cheung HS, Sabo EF, and Ondetti MA. 1977. Design of potent competitive inhibitors of angiotensin converting enzyme: carboxy alkanoyl and mercaptoalkanoyl amino acid. Biochemistry 16, 5484-5491. https://doi.org/10.1021/bi00644a014
  4. Gokul B, Lee JH, Song KB, Panda T, Rhee SK, and Kim CH. 2000. Screening of microorganisms producing esterase for the production of (R)-$\beta$-Acetylmercaptoisobutyric acid from methyl (R,S)-$\beta$-acetylmercaptoisobutyrate. Biotechnol. Bioprocess Eng. 5, 57-60. https://doi.org/10.1007/BF02932355
  5. Hasegawa J, Ogura M, Kanema H, Kawaharada H, and Watanabe K. 1981. Stereoselective conversion of isobutyric acid to $\beta$-hydroxyisobutyric acid by microorganism. J. Ferment. Technol. 59, 203-208.
  6. Honda K, Kataoka M, and Shimizu S. 2002. Enzymatic preparation of D-$\beta$-acetylthioisobutyric acid and cetraxate hydrochloride using a stereo- and/or regioselective hydrolase, 3,4-dihydrocoumarin hydrolase from Acinetobacter calcoaceticus. Appl. Microbiol. Biotechnol. 60, 288-292. https://doi.org/10.1007/s00253-002-1116-3
  7. Lee JH, Gokul B, Song KB, Rhee SK, and Kim CH. 2000. Cloning and sequence analysis of the estA gene encoding enzyme for producing (R)-$\beta$-acetylmercaptoisobutyric acid from Pseudomonas aeruginosa 1001. J. Biosci. Bioeng. 90, 684-687. https://doi.org/10.1016/S1389-1723(00)90019-7
  8. Ondetti MA and Cushman J. 1981. Inhibition of renin-angiotensin system. A new approach to the theory of hypertension. J. Med. Chem. 24, 355-361. https://doi.org/10.1021/jm00136a001
  9. Ondetti MA, Rubin B, and Cushman DW. 1977. Design of specific inhibitors of angiotensin converting enzyme: new class of orally active antihypertensive agents. Science 196, 441-444. https://doi.org/10.1126/science.191908
  10. Ozaki E, Sakimae A, and Numazawa R. 1994. Cloning and expression of Pseudomonas putida gene in Escherichia coli and its use in enzymatic production of D-$\beta$-acetylthioisobutyric acid. Biosci. Biotechnol. Biochem. 58, 1745-1776. https://doi.org/10.1271/bbb.58.1745
  11. Ozaki E, Sakimae A, and Numazawa R. 1995. Nucleotide sequence of the gene for a thermostable esterase from Pseudomonas putida MR-2068. Biosci. Biotechnol. Biochem. 59, 1204-1207. https://doi.org/10.1271/bbb.59.1204
  12. Romano D, Bonomi F, Mattos MC, Fonseca TS, Oliveira MCF, and Molinari F. 2015. Esterases as stereoselective biocatalysts. Biotechnol. Adv. 33, 547-565. https://doi.org/10.1016/j.biotechadv.2015.01.006
  13. Sakimae A, Hosoi A, Kobayashi YH, Ousuga N, Numazawa R, Watanabe I, and Ohnishi H. 1992a. Screening of microorganisms producing D-$\beta$-acetylthioisobutyric acid from methyl D,L-$\beta$-acetylthioisobutyrate. Biosci. Biotechnol. Biochem. 56, 1252-1256. https://doi.org/10.1271/bbb.56.1252
  14. Sakimae A, Kobayashi Y, Ousuga N, Numazawa R, and Ohnishi H. 1993a. Chemical racemization of methyl L-$\beta$-acetylthioisobutyrate. Biosci. Biotechnol. Biochem. 57, 17-19. https://doi.org/10.1271/bbb.57.17
  15. Sakimae A, Numazawa R, and Ohnishi H. 1992b. A newly isolated microorganism producing D-$\beta$-acetylthioisobutyric acid from methyl D,L-$\beta$-acetylthioisobutyrate. Biosci. Biotechnol. Biochem. 56, 1341. https://doi.org/10.1271/bbb.56.1341
  16. Sakimae A, Ozaki E, Toyama H, Ousuga N, Numazawa R, Muraoka I, Hamada E, and Ohnishi H. 1993b. Process conditions for production of D-$\beta$-acetylthioisobutyric acid from methyl D,L-$\beta$-acetylthioisobutyrate with the cells of Pseudomonas putida MR-2068. Biosci. Biotechnol. Biochem. 57, 782-786. https://doi.org/10.1271/bbb.57.782
  17. Shimazaki M, Hasegawa J, Kan K, Nomura K, Nose Y, Kondo H, Ohashi T, and Watanabe K. 1982. Synthesis of captopril starting from an optically active $\beta$-hydroxy acid. Chem. Pharm. Bull. 30, 3139-3146. https://doi.org/10.1248/cpb.30.3139
  18. Shaw SY, Chen YJ, Ou JJ, and Ho L. 2006. Enzymatic resolution of methyl DL-$\beta$-acetylthioisobutyrate and DL-$\beta$-acetylthioisobutyramide using a stereoselective esterase from Pseudomonas putida IFO12996. J. Mol. Catal. B Enzym. 38, 163-170. https://doi.org/10.1016/j.molcatb.2006.01.002