Fig. 1. Enzymatic resolution of D-β-acetylthioisobutyric acid (DAT) from DL-β-acetylthioisobutyrate (DL-ester) for synthesis of captopril.
Fig. 2. Phylogenic tree based on 16S rRNA sequence of Klebsiella pneumoniae CJ-317.
Fig. 3. Residual esterase activity of the K. pneumoniae CJ-317 (○) and P. putida CJ-187 (●).
Fig. 4. Effects of reaction temperature on the esterase activity of K. pneumoniae CJ-317 (○) and P. putida CJ-187 (●).
Fig. 5. Effects of the concentration of D-β-acetylthioisobutyric acid (DAT) on the esterase activity of K. pneumoniae CJ-317 (○) and P. putida CJ-187 (●).
Table 1. Morphological and physiological characteristics of isolates
Table 2. Thermostability of esterases by various strains
References
- Chirumamilla RR, Marchant R, and Nigam P. 2001. Captopril and its synthesis from chiral intermediates. J. Chem. Technol. Biotechnol. 76, 123-127. https://doi.org/10.1002/jctb.337
-
Cohen N, Eichel WF, Lopresti RJ, Neucom C, and Saucy G. 1976. Synthetic studies on (2R, 4'R, 8'R)-
$\alpha$ -tocopherol, an approach utilizing side chain synthons of microbiological origin. J. Org. Chem. 41, 3505-3511. https://doi.org/10.1021/jo00884a002 - Cushman DW, Cheung HS, Sabo EF, and Ondetti MA. 1977. Design of potent competitive inhibitors of angiotensin converting enzyme: carboxy alkanoyl and mercaptoalkanoyl amino acid. Biochemistry 16, 5484-5491. https://doi.org/10.1021/bi00644a014
-
Gokul B, Lee JH, Song KB, Panda T, Rhee SK, and Kim CH. 2000. Screening of microorganisms producing esterase for the production of (R)-
$\beta$ -Acetylmercaptoisobutyric acid from methyl (R,S)-$\beta$ -acetylmercaptoisobutyrate. Biotechnol. Bioprocess Eng. 5, 57-60. https://doi.org/10.1007/BF02932355 -
Hasegawa J, Ogura M, Kanema H, Kawaharada H, and Watanabe K. 1981. Stereoselective conversion of isobutyric acid to
$\beta$ -hydroxyisobutyric acid by microorganism. J. Ferment. Technol. 59, 203-208. -
Honda K, Kataoka M, and Shimizu S. 2002. Enzymatic preparation of D-
$\beta$ -acetylthioisobutyric acid and cetraxate hydrochloride using a stereo- and/or regioselective hydrolase, 3,4-dihydrocoumarin hydrolase from Acinetobacter calcoaceticus. Appl. Microbiol. Biotechnol. 60, 288-292. https://doi.org/10.1007/s00253-002-1116-3 -
Lee JH, Gokul B, Song KB, Rhee SK, and Kim CH. 2000. Cloning and sequence analysis of the estA gene encoding enzyme for producing (R)-
$\beta$ -acetylmercaptoisobutyric acid from Pseudomonas aeruginosa 1001. J. Biosci. Bioeng. 90, 684-687. https://doi.org/10.1016/S1389-1723(00)90019-7 - Ondetti MA and Cushman J. 1981. Inhibition of renin-angiotensin system. A new approach to the theory of hypertension. J. Med. Chem. 24, 355-361. https://doi.org/10.1021/jm00136a001
- Ondetti MA, Rubin B, and Cushman DW. 1977. Design of specific inhibitors of angiotensin converting enzyme: new class of orally active antihypertensive agents. Science 196, 441-444. https://doi.org/10.1126/science.191908
-
Ozaki E, Sakimae A, and Numazawa R. 1994. Cloning and expression of Pseudomonas putida gene in Escherichia coli and its use in enzymatic production of D-
$\beta$ -acetylthioisobutyric acid. Biosci. Biotechnol. Biochem. 58, 1745-1776. https://doi.org/10.1271/bbb.58.1745 - Ozaki E, Sakimae A, and Numazawa R. 1995. Nucleotide sequence of the gene for a thermostable esterase from Pseudomonas putida MR-2068. Biosci. Biotechnol. Biochem. 59, 1204-1207. https://doi.org/10.1271/bbb.59.1204
- Romano D, Bonomi F, Mattos MC, Fonseca TS, Oliveira MCF, and Molinari F. 2015. Esterases as stereoselective biocatalysts. Biotechnol. Adv. 33, 547-565. https://doi.org/10.1016/j.biotechadv.2015.01.006
-
Sakimae A, Hosoi A, Kobayashi YH, Ousuga N, Numazawa R, Watanabe I, and Ohnishi H. 1992a. Screening of microorganisms producing D-
$\beta$ -acetylthioisobutyric acid from methyl D,L-$\beta$ -acetylthioisobutyrate. Biosci. Biotechnol. Biochem. 56, 1252-1256. https://doi.org/10.1271/bbb.56.1252 -
Sakimae A, Kobayashi Y, Ousuga N, Numazawa R, and Ohnishi H. 1993a. Chemical racemization of methyl L-
$\beta$ -acetylthioisobutyrate. Biosci. Biotechnol. Biochem. 57, 17-19. https://doi.org/10.1271/bbb.57.17 -
Sakimae A, Numazawa R, and Ohnishi H. 1992b. A newly isolated microorganism producing D-
$\beta$ -acetylthioisobutyric acid from methyl D,L-$\beta$ -acetylthioisobutyrate. Biosci. Biotechnol. Biochem. 56, 1341. https://doi.org/10.1271/bbb.56.1341 -
Sakimae A, Ozaki E, Toyama H, Ousuga N, Numazawa R, Muraoka I, Hamada E, and Ohnishi H. 1993b. Process conditions for production of D-
$\beta$ -acetylthioisobutyric acid from methyl D,L-$\beta$ -acetylthioisobutyrate with the cells of Pseudomonas putida MR-2068. Biosci. Biotechnol. Biochem. 57, 782-786. https://doi.org/10.1271/bbb.57.782 -
Shimazaki M, Hasegawa J, Kan K, Nomura K, Nose Y, Kondo H, Ohashi T, and Watanabe K. 1982. Synthesis of captopril starting from an optically active
$\beta$ -hydroxy acid. Chem. Pharm. Bull. 30, 3139-3146. https://doi.org/10.1248/cpb.30.3139 -
Shaw SY, Chen YJ, Ou JJ, and Ho L. 2006. Enzymatic resolution of methyl DL-
$\beta$ -acetylthioisobutyrate and DL-$\beta$ -acetylthioisobutyramide using a stereoselective esterase from Pseudomonas putida IFO12996. J. Mol. Catal. B Enzym. 38, 163-170. https://doi.org/10.1016/j.molcatb.2006.01.002