• Title/Summary/Keyword: pseudo order

Search Result 1,051, Processing Time 0.025 seconds

Community Type and Stand Structure of the Korean Pine(Pinus koraiensis) Natural Forest in Seoraksan National Park (설악산 국립공원 잣나무 천연림의 군락유형 및 임분구조)

  • Song, Youn-Hee;Yun, Chung-Weon
    • Korean Journal of Environment and Ecology
    • /
    • v.20 no.1
    • /
    • pp.29-40
    • /
    • 2006
  • This study was conducted to obtain the fundamental data for the ecological management in the Pinus koraiensis natural forest in Seoraksan National Park. The community types of the P. koraiensis forest were divided into Ainsliaea acerifolia group and Rhododendron schlippenbachii group. A. acerifolia group was subdivided into Acer tschonoskii var. rubripes subgroup and Calamagrostis arundinacea subgroup. The importance value of major species showed higher value in the order like Pinus koraienses, Abies nephrolepis, Acer barbinerve, Betula ermani, Acer pseudo-sieboldianum, Sorbus commixta and Quercus mongolica. The value of species diversify ranged from 0.44 to 0.86, and showed stronger competition in the interspecific association than in the intraspecific one. The number of individuals of P. koraiensis below 10 centimeters in the 15 study sites was 35, and it was considered that the population of P. koraiensis could be succeeded to the other species in the present situation because of lower frequency in the low layer though the canopy of tree layer was dominated with P. koraiensis. The radial growth patterns of P. koraiensis individuals were mainly fluctuated for the entire life time, which was considered to be caused by frequent disturbance.

Comparison of Acceleration-Compensating Mechanisms for Improvement of IMU-Based Orientation Determination (IMU기반 자세결정의 정확도 향상을 위한 가속도 보상 메카니즘 비교)

  • Lee, Jung Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.783-790
    • /
    • 2016
  • One of the main factors related to the deterioration of estimation accuracy in inertial measurement unit (IMU)-based orientation determination is the object's acceleration. This is because accelerometer signals under accelerated motion conditions cannot be longer reference vectors along the vertical axis. In order to deal with this issue, some orientation estimation algorithms adopt acceleration-compensating mechanisms. Such mechanisms include the simple switching techniques, mechanisms with adaptive estimation of acceleration, and acceleration model-based mechanisms. This paper compares these three mechanisms in terms of estimation accuracy. From experimental results under accelerated dynamic conditions, the following can be concluded. (1) A compensating mechanism is essential for an estimation algorithm to maintain accuracy under accelerated conditions. (2) Although the simple switching mechanism is effective to some extent, the other two mechanisms showed much higher accuracies, particularly when test conditions were severe.

Metal Ion Catalysis in Nucleophilic Displacement Reactions of 2-Pyridyl X-Substituted Benzoates with Potassium Ethoxide in Anhydrous Ethanol

  • Lee, Jae-In;Kang, Ji-Sun;Im, Li-Ra;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3543-3548
    • /
    • 2010
  • A kinetic study on nucleophilic displacement reactions of 2-pyridyl X-substituted benzoates 1a-e with potassium ethoxide (EtOK) in anhydrous ethanol is reported. Plots of pseudo-first-order rate constants ($k_{obsd}$) vs. $[EtOK]_o$ exhibit upward curvature. The $k_{obsd}$ value at a fixed $[EtOK]_o$ decreases steeply upon addition of 18-crown-6-ether (18C6) to the reaction mixture up to [18C6]/$[EtOK]_o$ = 1 and then remains nearly constant thereafter. In contrast, $k_{obsd}$ increases sharply upon addition of LiSCN or KSCN. Dissection of $k_{obsd}$ into $k_{EtO^-}$ and $k_{EtOM}$ has revealed that ion-paired EtOK is more reactive than dissociated $EtO^-$, indicating that $K^+$ ion acts as a Lewis acid catalyst. Hammett plots for the reactions of 1a-e with dissociated $EtO^-$ and ion-paired EtOK result in excellent linear correlation with $\rho$ values of 3.01 and 2.67, respectively. The $k_{EtOK}/k_{EtO^-}$ ratio increases as the substituent X in the benzoyl moiety becomes a stronger electron-donating group. $K^+$ ion has been concluded to catalyze the current reaction by stabilizing the transition state through formation of a 6-membered cyclic complex.

Selection of Suitable Micellar Catalyst for 1,10-Phenanthroline Promoted Chromic Acid Oxidation of Formic Acid in Aqueous Media at Room Temperature

  • Ghosh, Aniruddha;Saha, Rumpa;Ghosh, Sumanta K.;Mukherjee, Kakali;Saha, Bidyut
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.6
    • /
    • pp.703-711
    • /
    • 2013
  • In the present investigation, kinetic studies of oxidation of formic acid with and without catalyst and promoter in aqueous acid media were studied under the pseudo-first order conditions [formic acid]T ${\gg}[Cr(VI)]_T$ at room temperature. In the 1,10-phenanthroline (phen) promoted path, the cationic Cr(VI) phen complex is the main active oxidant species undergoes a nucleophilic attack by the substrate to form a ternary complex which subsequently experiences a redox decomposition through several steps leading to the products $CO_2$ and $H_2$ along with the Cr(III) phen complex. The anionic surfactant (i.e., sodium dodecyl sulfate, SDS) and neutral surfactant (i.e., Triton X-100, TX-100) act as catalyst and the reaction undergo simultaneously in both aqueous and micellar phase with an enhanced rate of oxidation in the micellar phase. Whereas the cationic surfactant (i.e., N-cetyl pyridinium chloride, CPC) acts as an inhibitor restricts the reaction to aqueous phase. The observed net enhancement of rate effects has been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. The neutral surfactant TX-100 has been observed as the suitable micellar catalyst for the phen promoted chromic acid oxidation of formic acid.

Preparation of PVC-LMO Beads Using Dimethyl Sulfoxide Solvent and Adsorption Characteristics of Lithium Ions (다이메틸설폭시화물 용매를 사용한 PVC-LMO 비드의 제조와 리튬 이온 흡착 특성)

  • You, Hae-Na;Lee, Dong-Hwan;Lee, Min-Gyu
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.154-159
    • /
    • 2014
  • In this study, PVC-LMO beads were prepared by immobilizing lithium manganese oxide (LMO) with poly vinyl chloride (PVC) diluted in dimethyl sulfoxide (DMSO) solvent on behalf of N-methyl-2-pyrrolidone (NMP). XRD analysis confirmed that LMO was immobilized well in PVC-LMO beads. The diameter of PVC-LMO beads synthesized by DMSO was about 4 mm. The adsorption experiments of lithium ions by PVC-LMO beads were conducted batchwise. The maximum adsorption capacity obtained from Langmuir model was 21.31 mg/g. The adsorption characteristics of lithium ions by PVC-LMO beads was well described by the pseudo-second-order kinetic model. It was considered that the internal diffusion was the rate controlling step.

Adsorption of methyl orange from aqueous solution on anion exchange membranes: Adsorption kinetics and equilibrium

  • Khan, Muhammad Imran;Wu, Liang;Mondal, Abhishek N.;Yao, Zilu;Ge, Liang;Xu, Tongwen
    • Membrane and Water Treatment
    • /
    • v.7 no.1
    • /
    • pp.23-38
    • /
    • 2016
  • Batch adsorption of methyl orange (MO) from aqueous solution using three kinds of anion exchange membranes BI, BIII and DF-120B having different ion exchange capacities (IECs) and water uptakes ($W_R$) was investigated at room temperature. The FTIR spectra of anion exchange membranes was analysed before and after the adsorption of MO dye to investigate the intractions between dye molecules and anion exchange membranes. The effect of various parameters such as contact time, initial dye concentration and molarity of NaCl on the adsorption capacity was studied. The adsorption capacity found to be increased with contact time and initial dye concentration but decreased with ionic strength. The adsorption of MO on BI, BIII and DF-120B followed pseudo-first-order kinetics and the nonlinear forms of Freundlich and Langmuir were used to predict the isotherm parameters. This study demonstrates that anion exchange membranes could be used as useful adsorbents for removal of MO dye from wastewater.

On-line Generation of Three-Dimensional Core Power Distribution Using Incore Detector Signals to Monitor Safety Limits

  • Jang, Jin-Wook;Lee, Ki-Bog;Na, Man-Gyun;Lee, Yoon-Joon
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.528-539
    • /
    • 2004
  • It is essential in commercial reactors that the safety limits imposed on the fuel pellets and fuel clad barriers, such as the linear power density (LPD) and the departure from nucleate boiling ratio (DNBR), are not violated during reactor operations. In order to accurately monitor the safety limits of current reactor states, a detailed three-dimensional (3D) core power distribution should be estimated from the in-core detector signals. In this paper, we propose a calculation methodology for detailed 3D core power distribution, using in-core detector signals and core monitoring constants such as the 3D Coupling Coefficients (3DCC), node power fraction, and pin-to-node factors. Also, the calculation method for several core safety parameters is introduced. The core monitoring constants for the real core state are promptly provided by the core design code and on-line MASTER (Multi-purpose Analyzer for Static and Transient Effects of Reactors), coupled with the core monitoring program. through the plant computer, core state variables, which include reactor thermal power, control rod bank position, boron concentration, inlet moderator temperature, and flow rate, are supplied as input data for MASTER. MASTER performs the core calculation based on the neutron balance equation and generates several core monitoring constants corresponding to the real core state in addition to the expected core power distribution. The accuracy of the developed method is verified through a comparison with the current CECOR method. Because in all the verification calculation cases the proposed method shows a more conservative value than the best estimated value and a less conservative one than the current CECOR and COLSS methods, it is also confirmed that this method secures a greater operating margin through the simulation of the YGN-3 Cycle-1 core from the viewpoint of the power peaking factor for the LPD and the pseudo hot pin axial power distribution for the DNBR calculation.

Biochemical Studies on Korean Fermented Foods. (IX) Variation of Vitamin $B_{12}$ during the Kimchi Fermentation Period (한국 발효식품에 대한 생물화학적 연구 (제9보) 침채류의 발효에 따르는 $VitaminB_{12}$의 변화에 대하여)

  • Lee, In-Jae;Haw, Kum;Kim, Sung-Ikk
    • YAKHAK HOEJI
    • /
    • v.4 no.1
    • /
    • pp.53-55
    • /
    • 1959
  • In order to confirm on production of vitamin $B_{12}$ during the kimchi fermentation period, the variation of its content is studied in this paper As a sample of kimchi for this fermentation study due to the seasonal condition, nabakkimchi which is aseasonal one in early spring, is prepared by author. The content of vitamin $B_{12}$ is estimated by the microbiological assay method using lactobacillus leichmannii A Tee 7830. Details for assay are indicated in the original part. And the pseudo-vitamin $B_{12}$ substances as thymidine which is active to the growth of lactobacillus leichmannii, are eliminated by the alkali treatment method of sample solution, According to the results shown in table 2 and 3 and figures 1 to 4, the following conclusions are summerized; 1. Vitamin $B_{12}$ produced during the fermentation period of kimchi. And the content of this vitamin during its optimum fermentation period, is much higher content compared with the theoretically calculated amount from its materials, This has been confirmed at the repeated experiment. The trend of variation during its period is indicated at the figures. 2. The sterilized kimchi inhibited the fermentation by sterilization at the preparation, did not increased its content showing only its theoretically calculated amount.

  • PDF

Dephosphorylation of Diphenyl-4-Nitrophenyl Phosphinate(DPNPIN) onto 2-Alkylbenzimidazolide Anion in TTABr Micellar Solution (TTABr 미셀 용액속에서 2-알킬벤즈이미다졸 음이온에 의해 추진되는 디페닐-4-니트로페닐 포스페네이트(DPNPIN)의 탈인산화반응)

  • Kim, Jeung-Bea
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.981-992
    • /
    • 2015
  • This study is mainly focused on micellar effect of tetradecyltrimethyl ammonium bromide(TTABr) solution including alkylbenzimidazole(R-BI) on dephosphorylation of diphenyl-4-nitrophenylphosphinate(DPNPIN) in carbonate buffer(pH 10.7). Dephosphorylation of DPNPIN is accelerated by $BI^{\Theta}$ ion in $10^2$ M Carbonate buffer(pH 10.7) of $4{\times}10^{-4}$ M TTABr solution up to 80 times as compared with the reaction in Carbonate buffer by no benzimidazole(BI) solution of TTABr. The value of pseudo first order rate constant($k_{\psi}$) of the reaction in TTABr solution reached a maximum rate constant increasing micelle concentration. The reaction mediated by $R-BI^{\Theta}$ in micellar solutions are obviously slower than those by $BI^{\Theta}$, and the reaction rate were decreased with increase of lengths of alkyl groups. It seems due to steric effect of alkyl groups of $R-BI^{\Theta}$ in Stern layer of micellar solution. The surfactant reagent, TTABr, strongly catalyzes the reaction of DPNPIN with R-BI and its anion($R-BI^{\Theta}$) in Carbonate buffer(pH 10.7). For example, $4{\times}10^{-4}$ M TTABr in $1{\times}10^{-4}$ M BI solution increase the rate constant($k_{\psi}=99.7{\times}10^{-4}1/sec$) of the dephosphorylation by a factor ca. 28, when compared with reaction($k_{\psi}=3.5{\times}10^{-4}1/sec$) in BI solution(without TTABr). And no TTABr solution, in BI solution increase the rate constant($k_{\psi}=3.5{\times}10^{-4}1/sec$) of the dephosphorylation by a factor ca. 39, when compared with reaction ($k_{\psi}=1.0{\times}10^{-5}1/sec$) in water solution(without BI).

Cu2+ ion reduction in wastewater over RDF-derived char

  • Lee, Hyung Won;Park, Rae-su;Park, Sung Hoon;Jung, Sang-Chul;Jeon, Jong-Ki;Kim, Sang Chai;Chung, Jin Do;Choi, Won Geun;Park, Young-Kwon
    • Carbon letters
    • /
    • v.18
    • /
    • pp.49-55
    • /
    • 2016
  • Refuse-derived fuel (RDF) produced using municipal solid waste was pyrolyzed to produce RDF char. For the first time, the RDF char was used to remove aqueous copper, a representative heavy metal water pollutant. Activation of the RDF char using steam and KOH treatments was performed to change the specific surface area, pore volume, and the metal cation quantity of the char. N2 sorption, Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), and Fourier transform infrared spectroscopy were used to characterize the char. The optimum pH for copper removal was shown to be 5.5, and the steam-treated char displayed the best copper removal capability. Ion exchange between copper ions and alkali/alkaline metal cations was the most important mechanism of copper removal by RDF char, followed by adsorption on functional groups existing on the char surface. The copper adsorption behavior was represented well by a pseudo-second-order kinetics model and the Langmuir isotherm. The maximum copper removal capacity was determined to be 38.17 mg/g, which is larger than those of other low-cost char adsorbents reported previously.