DOI QR코드

DOI QR Code

Dephosphorylation of Diphenyl-4-Nitrophenyl Phosphinate(DPNPIN) onto 2-Alkylbenzimidazolide Anion in TTABr Micellar Solution

TTABr 미셀 용액속에서 2-알킬벤즈이미다졸 음이온에 의해 추진되는 디페닐-4-니트로페닐 포스페네이트(DPNPIN)의 탈인산화반응

  • 김정배 (계명대학교 환경학부 지구환경학과)
  • Received : 2015.03.13
  • Accepted : 2015.07.17
  • Published : 2015.08.31

Abstract

This study is mainly focused on micellar effect of tetradecyltrimethyl ammonium bromide(TTABr) solution including alkylbenzimidazole(R-BI) on dephosphorylation of diphenyl-4-nitrophenylphosphinate(DPNPIN) in carbonate buffer(pH 10.7). Dephosphorylation of DPNPIN is accelerated by $BI^{\Theta}$ ion in $10^2$ M Carbonate buffer(pH 10.7) of $4{\times}10^{-4}$ M TTABr solution up to 80 times as compared with the reaction in Carbonate buffer by no benzimidazole(BI) solution of TTABr. The value of pseudo first order rate constant($k_{\psi}$) of the reaction in TTABr solution reached a maximum rate constant increasing micelle concentration. The reaction mediated by $R-BI^{\Theta}$ in micellar solutions are obviously slower than those by $BI^{\Theta}$, and the reaction rate were decreased with increase of lengths of alkyl groups. It seems due to steric effect of alkyl groups of $R-BI^{\Theta}$ in Stern layer of micellar solution. The surfactant reagent, TTABr, strongly catalyzes the reaction of DPNPIN with R-BI and its anion($R-BI^{\Theta}$) in Carbonate buffer(pH 10.7). For example, $4{\times}10^{-4}$ M TTABr in $1{\times}10^{-4}$ M BI solution increase the rate constant($k_{\psi}=99.7{\times}10^{-4}1/sec$) of the dephosphorylation by a factor ca. 28, when compared with reaction($k_{\psi}=3.5{\times}10^{-4}1/sec$) in BI solution(without TTABr). And no TTABr solution, in BI solution increase the rate constant($k_{\psi}=3.5{\times}10^{-4}1/sec$) of the dephosphorylation by a factor ca. 39, when compared with reaction ($k_{\psi}=1.0{\times}10^{-5}1/sec$) in water solution(without BI).

Keywords

References

  1. Al-Lohedan, H., Bunton, C. A., Mhala, M. M., 1982, Micellar effects upon spontaneous hydrolyses and their relation to mechanism, J. Amer. Chem. Soc., 104, 6654-6660. https://doi.org/10.1021/ja00388a030
  2. Blatt, A. H., 1943, Organic Synthesis, Collective vol II, 65.
  3. Bunton, C. A., Cerichelli, G., Ihara, Y., Sepulveda, L., 1979, Micellar catalysis and reactant incorporation in dephosphorylation and nucleophilic substitution, J. Amer. Chem. Soc., 101, 2429-2435. https://doi.org/10.1021/ja00503a032
  4. Bunton, C. A., Hong, Y. S., Romsted, L. S., Quan, C., 1981, Catalysis by hydrophobic tetraalkyl ammonium ions; Dephosphorylation of p-nitrophenyl diphenyl phosphate, J. Amer. Chem. Soc., 103, 5788-5794. https://doi.org/10.1021/ja00409a029
  5. Bunton, C. A., Debuzzaccarini, F., Hamed, F. H., 1983, Dephosphorylation in cationic micelles and microe-mulsions; Effects of added alcohols, J. Org. Chem., 48, 2457-2461. https://doi.org/10.1021/jo00163a003
  6. Bunton, C. A., Moffatt, J. R., 1985, Micellar reactions of hydrophilic ions; A coulombic model, J. Phys. Chem., 89(20), 4166-4169. https://doi.org/10.1021/j100266a003
  7. Bunton, C. A., Cuenca, A., 1987, Abnormal micellar effects on reactions of azide and N-alkyl-2-bromo pyridinium ions, J. Org. Chem., 52(5), 901-907. https://doi.org/10.1021/jo00381a032
  8. Bunton, C. A., Mhala, M. M., Moffatt, J. R., 1989, Nucleophilic reactions in zwitterionic micelles of amine oxide or betaine sulfonate surfactants, J. Phys. Chem., 93(2), 854-858. https://doi.org/10.1021/j100339a061
  9. Bunton, C. A., 1997, Reactivity in aqueous association colloids. Descriptive utility of the pseudophase model, J. Molecular Liquids, 72, 231-249. https://doi.org/10.1016/S0167-7322(97)00040-8
  10. Cook, R. D., Diebert, C. E., Schwarz, W., Turley, P. C., Haake, P., 1973, Mechanism of nucleophilic displacement at phosphorus in the alkaline hydrolysis of phosphinate esters, J. Amer. Chem. Soc., 95, 8088-8096. https://doi.org/10.1021/ja00805a023
  11. Dekeijzer, A. H., Koole, L. H., Van der Hofstad, W. J. M., Buckrate, H. M., 1988, Enhancement of nucleophilic substitution reactions in phosphate esters; Influence of conformational transmission on the rate of solvolysis in alkyl diphenyl- phosphinates, J. Org. Chem., 54, 1453-1456.
  12. Fendler, E. J., 1966, Reaction mechanism in phosphate ester hydrolysis, John Wiley, 65-89.
  13. Fendler, J. H., Fendler, E. J., 1975, Catalysis in micellar and macromolecular system, Academic press, 4th. ed., New York, 30-47.
  14. Foroudian, H. J., Gillitt N. D., Bunton, C. A., 2002, Effects of nonionic micelles on dephosphorylation and aromatic nucleophilic substitution, J. Colloid Interf. Sci., 250, 230-237. https://doi.org/10.1006/jcis.2002.8306
  15. Hong, Y. S., Park, C. S., Kim, J. B., 1984, Chemical reactions in surfactant solution(I). Substituent effects of 2-alkylbenzimidazolide ion on dephos-phorylation in CTABr solution, J. Kor. Chem. Soc., 29(5), 522-532.
  16. Kim, J. B., Kim, H. Y., 2004, Effect of $OH^{\theta}$ and oiodosobenzoate ions on dephosphorylation of organo phosphororus ester in CTAX micelle, J. Environ. Sci., 14(2), 241-249.
  17. Kim, J. B., 2005, Dephosphorylation of an organic phosphinate by nucleophile in anionic and cationic micellar solutions, J. Environ. Sci., 15(5), 485-491.
  18. Maximiano, F. A., Chaimovich, H, Cuccovia, I. M., 2006, Decarboxylation of 6-nitrobenzisoxazole-3-carboxylate in mixed micelles of zwitterionic and positively charged surfactants, Langmuir, 22, 8050-8055. https://doi.org/10.1021/la061042p
  19. Quina, F. H., Chaimovich, H., 1979, Ion exchange in micellar solutions 1; Conceptual framework for ion exchange in micellar solutions, J. Phys. Chem., 83(14), 1844-1850. https://doi.org/10.1021/j100477a010
  20. Romsted, I. R., Cordes, E. H., 1968, Secondary valence force catalysis.VII. Catalysis of hydrolysis of p-nitro-phenyl hexanoate by micelle-forming cationic detergents, J. Amer. Chem. Soc., 90, 4404-4409. https://doi.org/10.1021/ja01018a036
  21. Perrin, D. D., Dempsey, B., 1974, Buffers for pH and metal ion control, Champman and Hall(London), 5.
  22. Santiago, J. Y., Nicholas, D. G., Bunton, C. A., 2004, Examination of the pseudophase model of monomer-micelle interconversion in cetylpyridinium chloride, J. Colloid Interf. Sci., 281, 482-487.