• 제목/요약/키워드: proteomic techniques

검색결과 25건 처리시간 0.021초

세포생물학과 Proteomics 응용 (Proteomic Application in Cell Biology)

  • 김동욱
    • 미생물학회지
    • /
    • 제37권2호
    • /
    • pp.109-113
    • /
    • 2001
  • 많은 생물체의 완전한 genome sequence가 속속 밝혀지면서 세포의 기능을 종합적으로 평가하려는 노력들이 이어져 왔다. DNA microarray는 세포 전체의 유전자 전사, 즉 mRNA 레벨을 측정해주므로 세포가 처해있는 서로 다른 환경 속에서 유전자 발현의 차이를 측정할 수 있다. 그러나 유전자 발현의 최종 산물은 mRNA를 통해 번역된 단백질에 해당되고, 많은 단백질이 번역후 수식(post-translational modification) 과정을 거쳐 세포 내에서 기능을 발휘하므로 진정한 세포의 생리학적 상태를 평가하기 위해선 단백질 레벨의 분석이 필수적이다. Proteomics란 유전자 산물 즉 단백질의 기능을 large-scale로 분석하는 것으로 정의된다. 이것은 genome에 의해 만들어지는 모든 단백질(proteome)을 의미하기도 하고 좁은 의미에서는 세포내의 어떤 organelle(예: Golgi Complex)에 존재하는 단백질 혹은 어떤 protein complex를 지칭하기도 한다. Proteomics는 어떤 주어진 조건에서 특별한 세포 또는 organelle에서 발현되는 단백질들을 연구하고 이해하는데 강력한 수단이 되고 있다. 이런 proteomics는 genomics, bioinformatics 등과 유기적으로 연결되어 세포의 기능을 입체적으로 이해하는데 도움을 준다. 본고에서는 proteomic analysis 과정을 간단히 살피고 최근 세포 생물학에서 이루어지는 proteomics의 응용을 살펴본다.

  • PDF

Quantitative Proteomics Towards Understanding Life and Environment

  • Choi, Jong-Soon;Chung, Keun-Yook;Woo, Sun-Hee
    • 한국환경농학회지
    • /
    • 제25권4호
    • /
    • pp.371-381
    • /
    • 2006
  • New proteomic techniques have been pioneered extensively in recent years, enabling the high-throughput and systematic analyses of cellular proteins in combination with bioinformatic tools. Furthermore, the development of such novel proteomic techniques facilitates the elucidation of the functions of proteins under stress or disease conditions, resulting in the discovery of biomarkers for responses to environmental stimuli. The ultimate objective of proteomics is targeted toward the entire proteome of life, subcellular localization biochemical activities, and the regulation thereof. Comprehensive analysis strategies of proteomics can be classified into three categories: (i) protein separation via 2-dimensional gel electrophoresis (2-DE) or liquid chromatography (LC), (ii) protein identification via either Edman sequencing or mass spectrometry (MS), and (iii) proteome quantitation. Currently, MS-based proteomics techniques have shifted from qualitative proteome analysis via 2-DE or 2D-LC coupled with off-line matrix assisted laser desorption ionization (MALDI) and on-line electrospray ionization (ESI) MS, respectively, toward quantitative proteome analysis. In vitro quantitative proteomic techniques include differential gel electrophoresis with fluorescence dyes. protein-labeling tagging with isotope-coded affinity tags, and peptide-labeling tagging with isobaric tags for relative and absolute quantitation. In addition, stable isotope-labeled amino acids can be in vivo labeled into live culture cells via metabolic incorporation. MS-based proteomics techniques extend to the detection of the phosphopeptide mapping of biologically crucial proteins, which ale associated with post-translational modification. These complementary proteomic techniques contribute to our current understanding of the manner in which life responds to differing environment.

Comprehensive proteome analysis using quantitative proteomic technologies

  • Kamal, Abu Hena Mostafa;Choi, Jong-Soon;Cho, Yong-Gu;Kim, Hong-Sig;Song, Beom-Heon;Lee, Chul-Won;Woo, Sun-Hee
    • Journal of Plant Biotechnology
    • /
    • 제37권2호
    • /
    • pp.196-204
    • /
    • 2010
  • With the completion of genome sequencing of several organisms, attention has been focused to determine the function and functional network of proteins by proteome analysis. The recent techniques of proteomics have been advanced quickly so that the high-throughput and systematic analyses of cellular proteins are enabled in combination with bioinformatics tools. Furthermore, the development of proteomic techniques helps to elucidate the functions of proteins under stress or diseased condition, resulting in the discovery of biomarkers responsible for the biological stimuli. Ultimate goal of proteomics orients toward the entire proteome of life, subcellular localization, biochemical activities, and their regulation. Comprehensive analysis strategies of proteomics can be classified as three categories: (i) protein separation by 2-dimensional gel electrophoresis (2-DE) or liquid chromatography (LC), (ii) protein identification by either Edman sequencing or mass spectrometry (MS), and (iii) quanitation of proteome. Currently MS-based proteomics turns shiftly from qualitative proteome analysis by 2-DE or 2D-LC coupled with off-line matrix assisted laser desorption ionization (MALDI) and on-line electrospray ionization (ESI) MS, respectively, to quantitative proteome analysis. Some new techniques which include top-down mass spectrometry and tandem affinity purification have emerged. The in vitro quantitative proteomic techniques include differential gel electrophoresis with fluorescence dyes, protein-labeling tagging with isotope-coded affinity tag, and peptide-labeling tagging with isobaric tags for relative and absolute quantitation. In addition, stable isotope labeled amino acid can be in vivo labeled into live culture cells through metabolic incorporation. MS-based proteomics extends to detect the phosphopeptide mapping of biologically crucial protein known as one of post-translational modification. These complementary proteomic techniques contribute to not only the understanding of basic biological function but also the application to the applied sciences for industry.

칩 기반 미세관 HPLC를 이용한 단백체 분석 (Chip-based microcapillary HPLC for proteomic analysis)

  • 김보라;박종문;이후근
    • 분석과학
    • /
    • 제24권6호
    • /
    • pp.407-413
    • /
    • 2011
  • 지난 10년간 고해상도 탠덤질량분석기에 사용되는 다양한 미세관 HPLC들이 개발되어 단백체분석연구에 사용되어져 왔다. 질량분석에 앞선 분리과정은 샘플 중의 불순물을 제거하며, 분석물을 좁은 용리 피크 내에 농축함으로써 이어지는 질량분석의 민감도를 향상시킬 수 있다. 본 총설에서는 복잡한 단백체 분석에 사용되는 미세유체 칩을 기반으로 하는 고성능 분리 기술들의 최근 개발 동향을 고찰하였다.

Development of Proteomics and Applications of Proteomics in Toxicology

  • Jung, Woon-Won;Huh, Yoon-Ee;Ryu, Jae-Chun;Lee, Eun-Il;Sul, Dong-Geun
    • Molecular & Cellular Toxicology
    • /
    • 제1권1호
    • /
    • pp.7-12
    • /
    • 2005
  • Proteomics has recently received intense scientific interest after the completion of the Human Genome Project, because this genome-based high technology allows to search new drug targets or diagnostic markers. Many proteome projects including Human plasma proteome projects (HPPP), Human liver proteome projects (HLPP), Human brain proteome projects (HBPP), and Mouse and Rat Proteome Project (MRPP) have been carried out and proteomic analytical techniques have been developed in second dimensional electrophoresis (2-DE) and LC/MS system. This powerful method has been applied in toxicology producing a new term "Toxicoproteomics". In this review, recent proteome projects, proteomic technologies, and toxicoproteomics will be discussed.

Small-molecule probes elucidate global enzyme activity in a proteomic context

  • Lee, Jun-Seok;Yoo, Young-Hwa;Yoon, Chang No
    • BMB Reports
    • /
    • 제47권3호
    • /
    • pp.149-157
    • /
    • 2014
  • The recent dramatic improvements in high-resolution mass spectrometry (MS) have revolutionized the speed and scope of proteomic studies. Conventional MS-based proteomics methodologies allow global protein profiling based on expression levels. Although these techniques are promising, there are numerous biological activities yet to be unveiled, such as the dynamic regulation of enzyme activity. Chemical proteomics is an emerging field that extends these types proteomic profiling. In particular, activity-based protein profiling (ABPP) utilizes small-molecule probes to monitor enzyme activity directly in living intact subjects. In this mini-review, we summarize the unique roles of smallmolecule probes in proteomics studies and highlight some recent examples in which this principle has been applied.

Fungal Secretome for Biorefinery: Recent Advances in Proteomic Technology

  • Adav, Sunil S.;Sze, Siu Kwan
    • Mass Spectrometry Letters
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 2013
  • Fungal biotechnology has been well established in food and healthcare sector, and now being explored for lignocellulosic biorefinery due to their great potential to produce a wide array of extracellular enzymes for nutrient recycling. Due to global warming, environmental pollution, green house gases emission and depleting fossil fuel, fungal enzymes for lignocellulosic biomass refinery become a major focus for utilizing renewal bioresources. Proteomic technologies tender better biological understanding and exposition of cellular mechanism of cell or microbes under particular physiological condition and are very useful in characterizing fungal secretome. Hence, in addition to traditional colorimetric enzyme assay, mass-spectrometry-based quantification methods for profiling lignocellulolytic enzymes have gained increasing popularity over the past five years. Majority of these methods include two dimensional gel electrophoresis coupled to mass spectrometry, differential stable isotope labeling and label free quantitation. Therefore, in this review, we reviewed more commonly used different proteomic techniques for profiling fungal secretome with a major focus on two dimensional gel electrophoresis, liquid chromatography-based quantitative mass spectrometry for global protein identification and quantification. We also discussed weaknesses and strengths of these methodologies for comprehensive identification and quantification of extracellular proteome.

Comparative Proteomic Analyses of the Yeast Saccharomyces cerevisiae KNU5377 Strain Against Menadione-Induced Oxidative Stress

  • Kim, Il-Sup;Yun, Hae-Sun;Jin, In-Gnyol
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.207-217
    • /
    • 2007
  • The Saccharomyces0 cerevisiae KNU5377 strain, which was isolated from spoilage in nature, has the ability to convert biomass to alcohol at high temperatures and it can resist against various stresses [18, 19]. In order to understand the defense mechanisms of the KNU5377 strain under menadione (MD) as oxidative stress, we used several techniques for study: peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) followed by two-dimensional (2D) gel electrophoresis, liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS), and surface-enhanced laser desorption ionization-time of flight (SELDI-TOF) technology. Among the 35 proteins identified by MALDI-TOF MS, 19 proteins including Sod1p, Sod2p, Tsa1p, and Ahp1p were induced under stress condition, while 16 proteins were augmented under normal condition. In particular, five proteins, Sod1p, Sod2p, Ahp1p, Rib3p, Yaf9p, and Mnt1p, were induced in only stressed cells. By LC-ESI-MS/MS analysis, 37 proteins were identified in normal cells and 49 proteins were confirmed in the stressed cells. Among the identified proteins, 32 proteins were found in both cells. Five proteins including Yel047cp and Met6p were only upregulated in the normal cells, whereas 17 proteins including Abp1P and Sam1p were elevated in the stressed cells. It was interesting that highly hypothetical proteins such as Ynl281wp, Ygr279cp, Ypl273wp, Ykl133cp, and Ykr074wp were only expressed in the stressed cells. SELDI-TOF analysis using the SAX2 and WCX2 chips showed that highly multiple-specific protein patterns were reproducibly detected in ranges from 2.9 to 27.0 kDa both under normal and stress conditions. Therefore, induction of antioxidant proteins, hypothetical proteins, and low molecular weight proteins were revealed by different proteomic techniques. These results suggest that comparative analyses using proteomics might contribute to elucidate the defense mechanisms of KNU5377 under MD stress.

Discovery to Human Disease Research: Proteo-Metabolomics Analysis

  • Minjoong Joo;Jeong-Hun Mok;Van-An Duong;Jong-Moon Park;Hookeun Lee
    • Mass Spectrometry Letters
    • /
    • 제15권2호
    • /
    • pp.69 -78
    • /
    • 2024
  • The advancement of high-throughput omics technologies and systems biology is essential for understanding complex biological mechanisms and diseases. The integration of proteomics and metabolomics provides comprehensive insights into cellular functions and disease pathology, driven by developments in mass spectrometry (MS) technologies, including electrospray ionization (ESI). These advancements are crucial for interpreting biological systems effectively. However, integrating these technologies poses challenges. Compared to genomic, proteomics and metabolomics have limitations in throughput, and data integration. This review examines developments in MS equipped electrospray ionization (ESI), and their importance in the effective interpretation of biological mechanisms. The review also discusses developments in sample preparation, such as Simultaneous Metabolite, Protein, Lipid Extraction (SIMPLEX), analytical techniques, and data analysis, highlighting the application of these technologies in the study of cancer or Huntington's disease, underscoring the potential for personalized medicine and diagnostic accuracy. Efforts by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and integrative data analysis methods such as O2PLS and OnPLS extract statistical similarities between metabolomic and proteomic data. System modeling techniques that mathematically explain and predict system responses are also covered. This practical application also shows significant improvements in cancer research, diagnostic accuracy and therapeutic targeting for diseases like pancreatic ductal adenocarcinoma, non-small cell lung cancer, and Huntington's disease. These approaches enable researchers to develop standardized protocols, and interoperable software and databases, expanding multi-omics research application in clinical practice.

Salmonella Gallinarum 세포외막단백질의 프로테옴 분석 및 닭에서의 방어능 효과 (Proteomic Analysis and Protective Effects of Outer Membrane Proteins from Salmonella Gallinarum in Chickens)

  • 선지선;조영재;장주현;강정무;한장혁;한태욱
    • 한국축산식품학회지
    • /
    • 제33권2호
    • /
    • pp.281-286
    • /
    • 2013
  • Salmonella Gallinarum (SG) is known as an important pathogen that causes fowl typhoid in chickens. To investigate SG outer-membrane proteins (OMPs) as a vaccine candidate, we used proteomic mapping and database analysis techniques with extracted OMPs. Also, extracted OMPs were evaluated in several aspects to their safety, immune response in their host and protective effects. Our research has established a proteomic map and database of immunogenic SG-OMPs used as inactive vaccine against salmonellosis in chickens. A total of 22 spots were detected by 2-dimensional gel electrophoresis and immunogenic protein analysis. Eight spots were identified by Matrix-Assisted Laser Desorption/Ionization-Time of Flight-Mass spectrometry (MALDI-TOF-MS) and peptide mass fingerprinting (PMF) and categorized into four different types of proteins. Among these proteins, OmpA is considered to be an immunogenic protein and involved in the hosts' immune system. To estimate the minimum safety dose in chickens, 35 brown layers were immunized with various concentrations of OMPs, respectively. Consequently, all chickens immunized with more than a $50{\mu}g$ dose were protected against challenges. Moreover, intramuscular administration of OMPs to chickens was more effective compared to subcutaneous administration. These results suggest that the adjuvanted SG-OMP vaccine not only induces both the humoral and cellular immune response in the host but also highly protects the hosts' exposed to virulent SG with $50{\mu}g$ OMPs extracted by our method.