Development of Proteomics and Applications of Proteomics in Toxicology

  • Jung, Woon-Won (MyGene Bioscience Institute) ;
  • Huh, Yoon-Ee (Environmental Toxico-Genomic and Proteomic Center, College of Medicine, Korea University) ;
  • Ryu, Jae-Chun (Toxicology Laboratory, Korea Institute of Science and Technology) ;
  • Lee, Eun-Il (Department of Preventive Medicine, College of Medicine, Korea University) ;
  • Sul, Dong-Geun (Graduate School of Medicine, Korea University)
  • Published : 2005.03.31

Abstract

Proteomics has recently received intense scientific interest after the completion of the Human Genome Project, because this genome-based high technology allows to search new drug targets or diagnostic markers. Many proteome projects including Human plasma proteome projects (HPPP), Human liver proteome projects (HLPP), Human brain proteome projects (HBPP), and Mouse and Rat Proteome Project (MRPP) have been carried out and proteomic analytical techniques have been developed in second dimensional electrophoresis (2-DE) and LC/MS system. This powerful method has been applied in toxicology producing a new term "Toxicoproteomics". In this review, recent proteome projects, proteomic technologies, and toxicoproteomics will be discussed.

Keywords

References

  1. Human proteome organization web site, www.hupo. org
  2. Bandara, L.R. & Kennedy, S. Toxicoproteomics-a new preclinical tool. Drug Discovery Today. 7, 411- 418. (2002)
  3. Westermeier, R & Naven, T. Proteomics in Practice: A laboratory manual of proteome analysis. Wiley- VCH. (2002)
  4. Verma, M., Kagan, J., Sidransky, D. & Srivastava, S. Proteomic analysis of cancer-cell mitochondria. Nature 3, 789-795. (2003)
  5. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422(6928), 198-207 (2003)
  6. Tirumalai, R.S., Chan, K.C., Prieto, D.A., Issaq, H.J., Conrads, T.P. & Veenstra, T.D. Characterization of the low molecular weight human serum proteome. Mol. Cell. Proteomics. 2, 1096-1103 (2003) https://doi.org/10.1074/mcp.M300031-MCP200
  7. Pieper, R. et al. The human serum proteome: display of nearly 3700 chromatographically separated protein spots on two-dimensional electrophoresis gels and identification of 325 distinct proteins. Proteomics. 3(7), 1345-64 (2003)
  8. Adkins, J.N., Varnum, S.M., Auberry, K.J., Moore, R.J., Angell, N.H., Smith, R.D., Springer, D.L. & Pounds. J.G.. Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Mol. Cell. Proteomics. 1, 947-955 (2002)
  9. Fujii, K., Nakano, T., Kawamura, T., Usui, F., Bando, Y., Wang, R. & Nishimura, T. Multidimensional protein profiling technology and its application to human plasma proteome. J. Proteome Res. 3, 712-8 (2004) https://doi.org/10.1021/pr030007q
  10. Marshall, J. et al. Human serum proteins preseparated by electrophoresis or chromatography followed by tandem mass spectrometry. J. Proteome Res. 3, 364- 82 (2004) https://doi.org/10.1021/pr034039p
  11. Shen, Y. et al. Ultra-high-efficiency strong cation exchange LC/RPLC/MS/MS for high dynamic range characterization of the human plasma proteome. Anal Chem. 76, 1134-44 (2004) https://doi.org/10.1021/ac034869m
  12. Anderson, N.L. et al. The human plasma proteome: a nonredundant list developed by combination of four separate sources. Mol. Cell. Proteomics. 3, 311-326 (2004) https://doi.org/10.1074/mcp.M300127-MCP200
  13. Melendez-Colon, V.J., Luch, A., Seidel, A. & Baird, W.M. Cancer initiation by polycyclic aromatic hydrocarbons results from formation of stable DNA adducts rather than apurinic sites. Carcinogen. 20, 1885 -1891 (1999) https://doi.org/10.1093/carcin/20.10.1885
  14. Moller, A., Soldan, M., Völker, U. & Maser, E. Twodimensional gel electrophoresis: a powerful method to elucidate cellular responses to toxic compounds. Toxicology. 160, 129-138 (2001) https://doi.org/10.1016/S0300-483X(00)00443-1
  15. Oh, S., Im, H., Oh, E., Rhee, J., Khim, J., Mun, J., Kim, J., Lee, E., Kim, J. & Sul, D. Effects of benzo (a)pyrene on protein expression in Jurkat T-cells. Proteomics. 4, 3514-3526 (2004) https://doi.org/10.1002/pmic.200400981
  16. Kim, M. et al. Evaluation of biological monitoring markers using genomic and proteomic analysis for automobile emission inspectors and waste incinerating workers exposed to polycyclic aromatic hydrocarbons or 2, 3, 7, 8-tetracholrodedibenzo-p-dioxins. Exp. Mol. Med. 5, 396-410 (2004)
  17. Lee, H., Lee, D., Joo, W., Sul, D., Lee, E. & Kim, C. Differential expression of proteins in rat plasma exposed to benzene. Proteomics. 4, 3498-3504 (2004) https://doi.org/10.1002/pmic.200400996
  18. Noh, K., Lee, D., Cha, J., Joo, W., Lee, E. & Kim, C. Protein biomarkers in the plasma of workers occupationally exposed to polycyclic aromatic hydrocarbons. Proteomics. 4, 3505-3513 (2004) https://doi.org/10.1002/pmic.200400964
  19. Joo, W., Sul, D., Lee, D., Lee, E. & Kim, C. Proteomic analysis of plasma proteins of workers exposed to benzene. Mutat. Res. 558, 35-44 (2004) https://doi.org/10.1016/j.mrgentox.2003.10.015