DOI QR코드

DOI QR Code

Quantitative Proteomics Towards Understanding Life and Environment

  • Published : 2006.12.31

Abstract

New proteomic techniques have been pioneered extensively in recent years, enabling the high-throughput and systematic analyses of cellular proteins in combination with bioinformatic tools. Furthermore, the development of such novel proteomic techniques facilitates the elucidation of the functions of proteins under stress or disease conditions, resulting in the discovery of biomarkers for responses to environmental stimuli. The ultimate objective of proteomics is targeted toward the entire proteome of life, subcellular localization biochemical activities, and the regulation thereof. Comprehensive analysis strategies of proteomics can be classified into three categories: (i) protein separation via 2-dimensional gel electrophoresis (2-DE) or liquid chromatography (LC), (ii) protein identification via either Edman sequencing or mass spectrometry (MS), and (iii) proteome quantitation. Currently, MS-based proteomics techniques have shifted from qualitative proteome analysis via 2-DE or 2D-LC coupled with off-line matrix assisted laser desorption ionization (MALDI) and on-line electrospray ionization (ESI) MS, respectively, toward quantitative proteome analysis. In vitro quantitative proteomic techniques include differential gel electrophoresis with fluorescence dyes. protein-labeling tagging with isotope-coded affinity tags, and peptide-labeling tagging with isobaric tags for relative and absolute quantitation. In addition, stable isotope-labeled amino acids can be in vivo labeled into live culture cells via metabolic incorporation. MS-based proteomics techniques extend to the detection of the phosphopeptide mapping of biologically crucial proteins, which ale associated with post-translational modification. These complementary proteomic techniques contribute to our current understanding of the manner in which life responds to differing environment.

Keywords

References

  1. Wilkins, M. R. Sanchez, J. C., Gooley, A. A., Appel, R. D., Humphery-Smith, I., Hochstrasser, D. F., and Williams, K. L. (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol. Genet. Eng. Rev. 13, 19-50 https://doi.org/10.1080/02648725.1996.10647923
  2. DeRisi, J. L., Iyer, V. R. and Brown, P. O. (1997) Exploring the metabolic and genetic control of gene expression in a genomic scale. Science 278, 680-686 https://doi.org/10.1126/science.278.5338.680
  3. Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R. (1999) Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720-1730 https://doi.org/10.1128/MCB.19.3.1720
  4. Hoogland, C., Sanchez, J. C., Walther, D., Baujard, V., Baujard, O., Tonella, L., Hochstrasser, D. F., and Appel, R .D. (1999) Two-dimensional electrophoresis resources available from ExPASy. Electrophoresis 20, 3568-3571 https://doi.org/10.1002/(SICI)1522-2683(19991201)20:18<3568::AID-ELPS3568>3.0.CO;2-W
  5. Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., et al., (2001) The sequence of the human genome. Science 291, 1304- 1351 https://doi.org/10.1126/science.1058040
  6. The C. elegans Sequencing Consortium (1998) Genome sequence of the nematodeCaenorhabditis elegans . A platform for investigating biology. Science 282, 2012-2018 https://doi.org/10.1126/science.282.5396.2012
  7. Davidson, E.H., Rast, J. P., Oliveru, P., Ransick, A., Calestani, C., Yuh, C. H., Minokawa, T., Amore, G., Hinman, V., Arenas-Mena, C., Otim, O., Brown, C. T., Livi, C. B., et al., (2002) A genomic regulatory network for development. Science 295, 1669-1678 https://doi.org/10.1126/science.1069883
  8. Fields, S. (2001) Proteomics. Proteomics in genomeland. Science 291, 1221-1224 https://doi.org/10.1126/science.291.5507.1221
  9. MacCoss, M. J., McDonald, W.H., Saraf, A., Sadygov, R., Clark, J. M., Tasto, J. J., Gould, K. L., Wolters, D., Washburn, M., Weiss, A., Clark, J. I., and Yates, J. R.3rd. (2002) Shotgun identification of protein modifications from protein complexes and lens tissue. Proc. Nat'l. Acad. Sci. USA 99, 7900- 7905
  10. Kim, Y. H., Cho, K., Yun, S. H., Kim, J. Y., Kwon, K.H., Yoo, J. S., and Kim, S. I. (2006) Analysis of aromatic catabolic pathways in Pseudomonas putida KT2440 using a combined proteomic approach: 2-DE/MS and cleavable isotope-coded affinity tag analysis. Proteomics 6, 1301-318 https://doi.org/10.1002/pmic.200500329
  11. Gorg, A., Postel, W., Gunther, S., Weser, J., Strahler, J.R., Hanash, S. M., Somerlot, L., and Kuick, R. (1988) Approach to staionary two-dimensional pattern: influence of focusing time and immobiline/ carrier ampholytes concentrations. Electrophoresis 9, 37-46 https://doi.org/10.1002/elps.1150090108
  12. Lewis, T. S., Hunt, J. B., Aveline, L. D., Jonscher, K. R., Louie, D. F., Yeh, J. M., Nahreini, T. S., Resing, K. A., and Ahn, N. G. (2000) Identification of novel MAP kinase pathway signaling targets by functional proteomics and mass spectrometry. Mol. Cell 6, 1343-1354 https://doi.org/10.1016/S1097-2765(00)00132-5
  13. Unlu, M., Morgan, M. E., and Minden, J. S. (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18, 2071-2077 https://doi.org/10.1002/elps.1150181133
  14. Washburn, M. P. Wolters, D., and Yates, J. R. 3rd. (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242-247 https://doi.org/10.1038/85686
  15. Edman, P. (1949) A method for the determination of the amino acid sequence in peptides. Arch Biochem 22, 475-476
  16. Gooley, A. A., Ou, K., Russell, J., Wilkins, M. R., Sanchez, J. C., Hochstrasser, D. F., and Williams, K. L. (1997) A role of Edman degradation in proteome studies. Electrophoresis 18, 1068-1072 https://doi.org/10.1002/elps.1150180707
  17. Pappin, D. J., Hojrup, P., and Bleasby, A. J. (1993) Rapid identification of proteins by peptide-mass fingerprinting. Curr. Biol. 3, 327-332 https://doi.org/10.1016/0960-9822(93)90195-T
  18. Choi, J.S., Kim, D. S., Lee, J., Kim, S. J., Kim, S. I., Kim, Y. H., Jong, J., Yoo, J. S., Suh, K. H., and Park, Y. M., (2000) Proteome analysis of lightinduced proteins in Synechocystis sp. PCC 6803: Identification of proteins separated by 2D-PAGE using N-terminal sequencing and MALADI-OF MS. Mols. Cells 10, 705-711 https://doi.org/10.1007/s100590000033
  19. Hunter, T. (1995) Protein kinases and posphatases: the yin and yang of protein phosphorylation and signaling. Cell 80, 225-236 https://doi.org/10.1016/0092-8674(95)90405-0
  20. Schlessinger, J. (1993) Cellular signaling by receptor tyrosine kinases. Harvey Lect. 89, 105-123
  21. Kaufmann, H., Bailey, J. E., and Fussenegger, M. (2001) Use of antibodies for detection of phosphorylated proteins separated by two-dimensional gel electrophoresis Proteomics 1, 194-1999 https://doi.org/10.1002/1615-9861(200102)1:2<194::AID-PROT194>3.0.CO;2-K
  22. Porath, J., Carlsson, J., Olsson, I., and Belfrage, G. (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258, 598-599 https://doi.org/10.1038/258598a0
  23. Sano, A. and Nakamura, H. (2004) Titania as a chemo-affinity support for the column-switching HPLC analysis of phosphopeptides: application to the characterization of phosphorylation sites in proteins by combination with protease digestion and electrospray ionization mass spectrometry. Anal Sci 20, 861-864 https://doi.org/10.2116/analsci.20.861
  24. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotopecoded affinity tags. Nature Biotech. 17, 994-999 https://doi.org/10.1038/13690
  25. Hansen, K. C., Schmitt-Uhlms, G., Chalkley, R. J., Hirsch, J., Baldwin, M. A., and Burlingame, A. L. (2003) Mass spectrometric analysis of protein mixtures at low levels using cleavable 13C-isotopecoded affinity tag and multidimensional chromatography. Mol. Cell. Proteomics 2, 299-314 https://doi.org/10.1074/mcp.M300021-MCP200
  26. Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Barlet-Jones, M., He, F., Jacobson, and A., Pappin, D. J. (2004) Multiplexed protein quantitation in Saccharomyces cervisiae using aminereactive isobaric tagging reagents. Mol. Cell. Proteomics 3, 1154-1169 https://doi.org/10.1074/mcp.M400129-MCP200
  27. Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., and Mann, M. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell. Proteomics 1, 376-386 https://doi.org/10.1074/mcp.M200025-MCP200
  28. Kisinger, T., Cox, B., Kannan, A., Chung, C., Hu, P., Ignatchenko, A., Scott, M. S., Gramolinoi, A. O., Morris, Q., Hallet, M. T., Rossant, J., Highes, T. R., Frey, B., and Emili, A. (2006) Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell 125, 173-186 https://doi.org/10.1016/j.cell.2006.01.044