• Title/Summary/Keyword: protein tissues

Search Result 1,564, Processing Time 0.029 seconds

Molecular Characterization and Tissue Distribution of Estrogen Receptor Genes in Domestic Yak

  • Fu, Mei;Xiong, Xian-Rong;Lan, Dao-Liang;Li, Jian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.12
    • /
    • pp.1684-1690
    • /
    • 2014
  • Estrogen and its receptors are essential hormones for normal reproductive function in males and females during developmental stage. To better understand the effect of estrogen receptor (ER) gene in yak (Bos grunniens), reverse transcription-polymerase chain reaction (PCR) was carried out to clone $ER{\alpha}$ and $ER{\beta}$ genes. Bioinformatics methods were used to analyze the evolutionary relationship between yaks and other species, and real-time PCR was performed to identify the mRNA expression of $ER{\alpha}$ and $ER{\beta}$. Sequence analysis showed that the ER open reading frames (ORFs) encoded 596 and 527 amino acid proteins. The yak $ER{\alpha}$ and $ER{\beta}$ shared 45.3% to 99.5% and 53.9% to 99.1% protein sequence identities with other species homologs, respectively. Real-time PCR analysis revealed that $ER{\alpha}$ and $ER{\beta}$ were expressed in a variety of tissues, but the expression level of $ER{\alpha}$ was higher than that of $ER{\beta}$ in all tissues, except testis. The mRNA expression of $ER{\alpha}$ was highest in the mammary gland, followed by uterus, oviduct, and ovary, and lowest in the liver, kidney, lung, testis, spleen, and heart. The $ER{\beta}$ mRNA level was highest in the ovary; intermediary in the uterus and oviduct; and lowest in the heart, liver, spleen, lung, kidney, mammary gland, and testis. The identification and tissue distribution of ER genes in yaks provides a foundation for the further study on their biological functions.

Knockdown of Cdc25B in Renal Cell Carcinoma is Associated with Decreased Malignant Features

  • Yu, Xiu-Yue;Zhang, Zhe;Zhang, Guo-Jun;Guo, Kun-Feng;Kong, Chui-Ze
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.931-935
    • /
    • 2012
  • Cdc25 phosphatases are important regulators of the cell cycle. Their abnormal expression detected in a number of tumors implies that their dysregulation is involved in malignant transformation. However, the role of Cdc25B in renal cell carcinomas remains unknown. To shed light on influence on renal cell carcinogenesis and subsequent progression, Cdc25B expression was examined by real-time RT-PCR and western blotting in renal cell carcinoma and normal tissues. 65 kDa Cdc25B expression was higher in carcinomas than in the adjacent normal tissues (P<0.05), positive correlations being noted with clinical stage and histopathologic grade (P<0.05). To additionally investigate the role of Cdc25B alteration in the development of renal cell carcinoma, Cdc25B siRNA was used to knockdown the expression of Cdc25B. Down-regulation resulted in slower growth, more G2/M cells, weaker capacity for migration and invasion, and induction of apoptosis in 769-P transfectants. Reduction of 14-3-3 protein expression appeared related to Cdc25B knockdown. These findings suggest an important role of Cdc25B in renal cell carcinoma development and provide a rationale for investigation of Cdc2B-based gene therapy.

G1/S-specific Cyclin-D1 Might be a Prognostic Biomarker for Patients with Laryngeal Squamous Cell Carcinoma

  • Zhang, Ying-Yao;Xu, Zhi-Na;Wang, Jun-Xi;Wei, Dong-Min;Pan, Xin-Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2133-2137
    • /
    • 2012
  • Objective: To investigate the prognostic role of antigen KI-67 (Ki-67) and G1/S-specific cyclin-D1 (cyclin-D1) in patients with laryngeal squamous cell carcinoma (LSCC). Methods: Immunohistochemical staining (IHS) was used to determine the protein expression of Ki-67 and cyclin-D1 in LSCC tissues. Kaplan-Meier survival curves was calculated with reference to Ki-67 and cyclin-D1 levels. Results: Cyclin-D1 and Ki67 were expressed in the nuclei of cancer cells. Among the total of 92 cancer tissues examined by immunohistochemistry, 60 (65.22%) had cyclin-D1 overexpression and 56 (60.87%) had Ki67 overexpression. Cyclin-D1 overexpression is associated with the advanced stage of the cancer (P=0.029), but not with gender, age, stage of cancer, histological differentiation, anatomical site, smoking history and alcohol consumption history. Ki67 overexpression is not associated with the advanced stage, gender, age, histological differentiation, anatomical site, smoking history and alcohol consumption history. A statistically significant correlation was found between lymph node status and the expression of Ki67 (p = 0.025). Overexpression of cyclin-D1 was correlated to shorter relapse-free survival period (P<0.001). Conclusions: Overexpression of cyclin-D1 can be used as a marker to predict relapse in patients with LSCC after primary curative resection.

CK2 Enzyme Affinity Against c-myc424-434 Substrate in Human Lung Cancer Tissue

  • Yaylim, Ilhan;Ozkan, Nazli Ezgi;Isitmangil, Turgut;Isitmangil, Gulbu;Turna, Akif;Isbir, Turgay
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.5233-5236
    • /
    • 2012
  • CK2 is a serine threonine kinase that participates in a variety of cellular processes with more than 300 defined substrates. This critical enzyme is known to be upregulated in cancers, but the role of this upregulation in carcinogenesis is not yet fully understood but c-myc, one of the defined CK2 substrates, is a well-known proto-oncogene that is normally essential in developmental process but is also involved in tumor development. We evaluated the optimal enzyme and substrate concentrations for CK2 activity in both neoplastic and non-neoplastic human lung tissues using the c-$myc^{424-434}$ peptide (EQKLISEEDL) as a substrate. The activities measured for the neoplastic tissue were 600-750 U/mg protein while those for the control tissue was in the range of 650-800 U/mg. $K_m$ value for c-myc peptide was determined as $0.33{\mu}M$ in non-neoplastic tissue and $0.18{\mu}M$ in neoplastic tissue. In this study, we did not observe an increased activity in the neoplastic tissue when compared with the non-neoplastic lung tissue, but we recorded two times higher affinity for c-$myc^{424-434}$ in cancer tissue. Considering the metabolic position of c-$myc^{424-434}$, our results suggest that phosphorylation by CK2 may be important in dimerization and thus it might affect the regulation of c-myc in cancer tissues.

Genomic Organization and Isoform-Dependent Expression Patterns of Wap65 genes in Various Tissues during Immune Challenges in the Mud Loach Misgurnus mizolepis

  • Kim, Yi Kyung;Cho, Young Sun;Lee, Sang Yoon;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.4
    • /
    • pp.471-478
    • /
    • 2014
  • Genomic organization, including the structural characteristics of 5'-flanking regions of two 65-kDa protein (WAP65) isoform genes associated with warm temperature acclimation, were characterized and their transcriptional responses to immune challenges were examined in the intestine, kidney and spleen of the mud loach (Misgurnus mizolepis; Cypriniformes). Both mud loach Wap65 isoform genes displayed a 10-exon structure that is common to most teleostean Wap65 genes. The two mud loach Wap65 isoforms were predicted to possess various stress- and immune-related transcription factor binding sites in their regulatory regions; however, the predicted motif profiles differed between the two isoforms, and the inflammation-related transcription factor binding motifs, such as NF-${\kappa}B$ and CREBP sites, were more highlighted in the Wap65-2 isoform than the Wap65-1 isoform. The results of qRT-PCR indicated that experimental immune challenges using Edwardsiella tarda, lipopolysaccharide or polyI:C induced the Wap65-2 isoform more than Wap65-1 isoform, although modulation patterns in response to these challenges were tissue- and stimulant-dependent. This study confirms that functional diversification between the two mud loach Wap65 isoforms (i.e., closer involvement of Wap65-2 in the acute phase of inflammation and innate immunity) occurs at the mRNA level in multiple tissues, and suggests that such differential modulation patterns between the two isoforms are related to the different transcription factor binding profiles in their regulatory regions.

Interferon Stimulated Gene - ISG15 is a Potential Diagnostic Biomarker in Oral Squamous Cell Carcinomas

  • Laljee, Rupesh Puthenparambil;Muddaiah, Sunil;Salagundi, Basavaraj;Cariappa, Ponappa Muckatira;Indra, Adarsh Surendran;Sanjay, Venkataram;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.1147-1150
    • /
    • 2013
  • Background: Cancer diagnostic biomarkers have a wide range of applications that include early detection of oral precancerous lesions and oral squamous cell carcinomas, and assessing the metastatic status of lesions. The interferon stimulated ISG15 gene encodes an ubiquitin-like protein, which conjugates to stabilize activation status of associated proteins. Hence a deregulated expression of ISG15 may promote carcinogenesis. Indeed overexpression of ISG15 has been observed in several cancers and hence it has been proposed as a strong candidate cancer diagnostic biomarker. Given the emerging relationship between malignant transformation and ISG15, we sought to examine the expression pattern of this gene in tumor biopsies of oral squamous cell carcinoma (OSCC) tissues collected from Indian patients. Materials and Methods: Total RNA isolated from thirty oral squamous cell carcinoma tissue biopsy samples were subjected to semi-quantitative RT-PCR with ISG15 specific primers to elucidate the expression level. Results: Of the thirty oral squamous cell carcinomas that were analyzed, ISG15 expression was found in twenty four samples (80%). Twelve samples expressed low level of ISG15, six of them expressed moderately, while the rest of them expressed very high level of ISG15. Conclusions: To the best of our knowledge, the results show for the first time an overexpression of ISG15 in up to 80% of oral squamous cell carcinoma tissues collected from Indian patients. Hence ISG15 may be explored for the possibility of use as a high confidence diagnostic biomarker in oral cancers.

DNA Repair Capacity in Peripheral Blood Lymphocytes Predicts Efficacy of Platinum-based Chemotherapy in Patients with Gastric Cancer

  • Zhang, Yi-Yin;Gu, Kang-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5507-5512
    • /
    • 2013
  • Objective: To investigate the correlation between ERCC1 expression levels in tumor tissue and peripheral blood lymphocytes (PBL) from patients with gastric cancer and assess the relationship between PBL DNA repair rate (DRR) and the efficacy of platinum chemotherapy. Methods: A total of 53 patients with gastric cancer receiving surgery and 20 controls were studied. ERCC1 protein expression in tumour tissue and PBL were determined by immunohistochemical staining. The PBL DRRs of 47 advanced patients and 20 controls were estimated by comet assay. Results: The positive expression rates of ERCC1 were 67. 9%, 56. 6% and 10.0% in tumour tissues, PBLs of gastric cancer patients, and PBLs of the control group. PBL ERCC1 expression correlated with that in tissue (${\chi}^2$=15. 463, p=0.000). Pearson contingency coefficient=0.475). DRRs of cancer patients by tail length (TL) (Z=4. 662, p=0.000) and tail moment (TM) (Z=3. 827, p=0.000) were significantly lower than that of control group. When TL was applied as an indicator, the correlation between DRR and chemotherapy efficacy was significant (Spearman rank correlation r=0.327, p=0.032). Patients with low levels of DRR in PBL presented better short-term efficacy of chemotherapy than those with high levels of DRR. Conclusions: The ERCC1 expression in PBLs may indirectly reflect ERCC1 expression in gastric cancer tissues. Compared with non-cancer populations, patients with gastric cancer may have lower DNA repair capacity. DRR in PBL may predict the short-term efficacy of platinum-based chemotherapy for patients with advanced gastric cancer.

Inactive extracellular superoxide dismutase disrupts secretion and function of active extracellular superoxide dismutase

  • Jeon, Byeong-Wook;Kim, Byung-Hak;Lee, Yun-Sang;Kim, Sung-Sub;Yoon, Jong-Bok;Kim, Tae-Yoon
    • BMB Reports
    • /
    • v.44 no.1
    • /
    • pp.40-45
    • /
    • 2011
  • Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme that protects cells and tissues from extracellular damage by eliminating superoxide anion radicals produced during metabolism. Two different forms of EC-SOD exist, and their different enzyme activities are a result of different disulfide bond patterns. Although only two folding variants have been discovered so far, five folding variants are theoretically possible. Therefore, we constructed five different mutant EC-SOD expression vectors by substituting cysteine residues with serine residues and evaluated their expression levels and enzyme activities. The mutant EC-SODs were expressed at lower levels than that of wild-type EC-SOD, and all of the mutants exhibited inhibited extracellular secretion, except for C195S ECSOD. Finally, we demonstrated that co-expression of wild-type EC-SOD and any one of the mutant EC-SODs resulted in reduced secretion of wild-type EC-SOD. We speculate that mutant EC-SOD causes malfunctions in systems such as antioxidant systems and sensitizes tissues to ROS-mediated diseases.

Molecular Screening and Characterization of Antiviral Potatoes

  • Tripathi, Giriraj;Li, Hongxain;Park, Jae-Kyun;Park, Yoon-Kyung;Cheong, Hyeon-Sook
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.2
    • /
    • pp.89-95
    • /
    • 2006
  • Potato plants carrying the Ry gene are extremely resistance to a number of potyviruses, but it is not known which variety expressed the resistance. In this investigation, combined classical and molecular techniques were used to identify virus resistance potatoes. Mechanical inoculation of 32 varieties of Korean potato cultivars, with potato virus Y (PVY), induced various symptoms, such as mosaic, yellowing, necrosis, mottle, vein clearing and vein bending. Different virus spreading patterns were observed, such as highly sensitive, moderate and resistant to $PVY^o$ inoculated leaves in different cultivars. From the results of double antibody sandwich-enzyme links immunosorbant assays (DAS-ELISA), coupled with reverse transcription polymerase chain reaction (RT-PCR), Winter valley and Golden valley were found to be highly susceptible and resistant cultivars to $PVY^o$ respectively. TEM was used as a complementary method to conform the localization of the virus in leaf tissues. TEM detect virus particles in Golden valley, where, ELISA and RT-PCR were unable to detect the CP gene. However, the interior part of the tissues was severely deformed in $PVY^o$ infected Winter valley, than Golden valley The Ry gene is involved in an induced response in $PVY^o$ infected Golden valley plants. The methods described in this study could be applied for the screening and development of antiviral potatoes.

Sexual Maturation May Affect the Levels of n-6 PUFA in Muscle Tissues of Male Mice

  • Park, Chang Seok;Choi, Inho;Park, Young Sik
    • Journal of Animal Science and Technology
    • /
    • v.55 no.2
    • /
    • pp.147-153
    • /
    • 2013
  • Lipid metabolism in mature male mice may be different from immature male mice, but the relationship of lipid metabolism, especially n-6 fatty acid metabolism, and sexual maturation is not clearly established. This study was carried out to elucidate whether sexual maturation may affect the metabolism of functional n-6 fatty acids of lipid components by investigating the composition of fatty acids in the longissimus muscle tissues of mature and immature male mice with GC and analyzing the expression of genes and proteins for synthesis of n-6 fatty acids with real-time PCR and western blotting, respectively. Mature male mice showed significantly higher testosterone level in the sera. Similarly, n-6 fatty acids, levels of linoleic acid (LA 18:2n-6) and total n-6 PUFA (Polyunsaturated fatty acids) were increased, but the levels of ${\gamma}$-linolenic acid (GLA; 18:3n-6), dihomo-${\gamma}$-linolenic acid (DGLA; 20:3n-6) and arachidonic acid (AA; 20:4 n-6) were decreased in the mature male mice. mRNA levels of ${\Delta}5$-desaturase (FASD1) and elongase (ELOVL5) genes related to n-6 fatty acid metabolism increased. However, the level of FADS1 protein only increased in mature male mice. In conclusion, this study suggested that sexual maturation of male mice affected n-6 fatty acid metabolism by stimulating the expression of enzyme FADS1 of n-6 PUFA metabolism.