• Title/Summary/Keyword: protein tissues

Search Result 1,564, Processing Time 0.028 seconds

Up-regulation of Insulin-like Growth Factor Binding Protein-3 Is Associated with Brain Metastasis in Lung Adenocarcinoma

  • Yang, Lishi;Li, Junyang;Fu, Shaozhi;Ren, Peirong;Tang, Juan;Wang, Na;Shi, Xiangxiang;Wu, Jingbo;Lin, Sheng
    • Molecules and Cells
    • /
    • v.42 no.4
    • /
    • pp.321-332
    • /
    • 2019
  • The brain is the most common metastatic site of lung adenocarcinoma; however, the mechanism of this selective metastasis remains unclear. We aimed to verify the hypothesis that exposure of tumor cells to the brain microenvironment leads to changes in their gene expression, which promotes their oriented transfer to the brain. A549 and H1299 lung adenocarcinoma cells were exposed to human astrocyte-conditioned medium to simulate the brain microenvironment. Microarray analysis was used to identify differentially expressed genes, which were confirmed by quantitative real-time PCR and western blotting. Knockdown experiments using microRNAs and the overexpression of genes by cell transfection were performed in addition to migration and invasion assays. In vitro findings were confirmed in clinical specimens using immunohistochemistry. We found and confirmed a significant increase in insulin-like growth factor binding protein-3 (IGFBP3) levels. Our results also showed that the up-regulation of IGFBP3 promoted A549 cell epithelial-mesenchymal transition, migration, and invasion, while the knockdown of IGFBP3 resulted in decreased cell motility. We also found that Transforming growth factor-${\beta}$ (TGF-${\beta}$)/Mothers against decapentaplegic homolog 4 (Smad4)-induced epithelial-mesenchymal transition was likely IGFBP3-dependent in A549 cells. Finally, expression of IGFBP3 was significantly elevated in pulmonary cancer tissues and intracranial metastatic tissues. Our data indicate that up-regulation of IGFBP3 might mediate brain metastasis in lung adenocarcinoma, which makes it a potential therapeutic target.

TJP1 Contributes to Tumor Progression through Supporting Cell-Cell Aggregation and Communicating with Tumor Microenvironment in Leiomyosarcoma

  • Lee, Eun-Young;Kim, Minjeong;Choi, Beom K.;Kim, Dae Hong;Choi, Inho;You, Hye Jin
    • Molecules and Cells
    • /
    • v.44 no.11
    • /
    • pp.784-794
    • /
    • 2021
  • Leiomyosarcoma (LMS) is a mesenchymal malignancy with a complex karyotype. Despite accumulated evidence, the factors contributing to the development of LMS are unclear. Here, we investigated the role of tight-junction protein 1 (TJP1), a membrane-associated intercellular barrier protein during the development of LMS and the tumor microenvironment. We orthotopically transplanted SK-LMS-1 cells and their derivatives in terms of TJP1 expression by intramuscular injection, such as SK-LMS-1 Sh-Control cells and SK-LMS-1 Sh-TJP1. We observed robust tumor growth in mice transplanted with LMS cell lines expressing TJP1 while no tumor mass was found in mice transplanted with SK-LMS-1 Sh-TJP1 cells with silenced TJP1 expression. Tissues from mice were stained and further analyzed to clarify the effects of TJP1 expression on tumor development and the tumor microenvironment. To identify the TJP1-dependent factors important in the development of LMS, genes with altered expression were selected in SK-LMS-1 cells such as cyclinD1, CSF1 and so on. The top 10% of highly expressed genes in LMS tissues were obtained from public databases. Further analysis revealed two clusters related to cell proliferation and the tumor microenvironment. Furthermore, integrated analyses of the gene expression networks revealed correlations among TJP1, CSF1 and CTLA4 at the mRNA level, suggesting a possible role for TJP1 in the immune environment. Taken together, these results imply that TJP1 contributes to the development of sarcoma by proliferation through modulating cell-cell aggregation and communication through cytokines in the tumor microenvironment and might be a beneficial therapeutic target.

Alternative splicing variant of NRP/B promotes tumorigenesis of gastric cancer

  • Kim, Aram;Mok, Bo Ram;Hahn, Soojung;Yoo, Jongman;Kim, Dong Hyun;Kim, Tae-Aug
    • BMB Reports
    • /
    • v.55 no.7
    • /
    • pp.348-353
    • /
    • 2022
  • Gastrointestinal cancer is associated with a high mortality rate. Here, we report that the splice variant of NRP/B contributes to tumorigenic activity in highly malignant gastric cancer through dissociation from the tumor repressor, HDAC5. NRP/B mRNA expression is significantly higher in the human gastric cancer tissues than in the normal tissues. Further, high levels of both the NRP/B splice variant and Lgr5, but not the full-length protein, are found in highly tumorigenic gastric tumor cells, but not in non-tumorigenic cells. The loss of NRP/B markedly inhibits cell migration and invasion, which reduces tumor formation in vivo. Importantly, the inhibition of alternative splicing increases the levels of NRP/B-1 mRNA and protein in AGS cells. The ectopic expression of full-length NRP/B exhibits tumor-suppressive activity, whereas NRP/B-2 induces the noninvasive human gastric cancer cells tumorigenesis. The splice variant NRP/B-2 which loses the capacity to interact with tumor repressors promoted oncogenic activity, suggesting that the BTB/POZ domain in the N-terminus has a crucial role in the suppression of gastric cancer. Therefore, the regulation of alternative splicing of the NRP/B gene is a potential novel target for the treatment of gastrointestinal cancer.

Therapeutic effects of paeoniflorin on irritable bowel syndrome in rats

  • Lei Wang;Jinyan Lei;Zeyu Zhao;Jianwei Jia;Li Wang
    • Journal of Veterinary Science
    • /
    • v.24 no.3
    • /
    • pp.23.1-23.16
    • /
    • 2023
  • Background: Irritable bowel syndrome (IBS) is a functional bowel disorder (FBD). Objectives: To assess the therapeutic effects of paeoniflorin (PF) on IBS in rats. Method: Sixty male Sprague-Dawley rats were randomly divided into normal, model, positive drug, low-dose PF, medium-dose PF and high-dose PF groups (n = 10). After gavage for 2 consecutive weeks, the effect of PF on abdominal pain symptoms was assessed based on the abdominal withdrawal reflex (AWR) score, fecal water content and pathological changes in colon tissues. D-lactate, interleukin-1β (IL-1β), transforming growth factor-β (TGF-β) and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay, and phosphorylated nuclear factor kappa B (p-NF-κB) p65 was detected by Western blotting. The abundance and diversity changes of intestinal flora were explored using 16S ribosomal RNA sequencing. Result: In PF groups, the mucosal morphology of colon tissues was intact, and the glands were arranged neatly and structured clearly, without obvious inflammatory cell infiltration. Compared with the model group, PF groups had significantly elevated pain threshold, and mRNA and protein levels of zonula occludens-1 (ZO-1) and occludin, decreased AWR score at 20 mmHg pressure, fecal water content, mRNA levels of IL-1β, TGF-β, and TNF-α, protein level of p-NF-κB p65 and level of serum D-lactate, and reduced levels of serum IL-1β, TGF-β, and TNF-α (p < 0.05, p < 0.01). PF groups had higher abundance of Lactobacillus, Akkermansia, Alistipes, and Bacteroides, but lower abundance of Desulfovibrio, Parasutterella, and Enterococcus than those of the model group. Conclusions: PF exerts therapeutic effects on IBS in rats probably by regulating the intestinal flora, and then up-regulating the expressions of ZO-1 and occludin in colon tissue while down-regulating the levels of IL-1β, TGF-β, TNF-α, D-lactate and p-NF-κB p65.

A Comparative Study on Anti-Obesity Efficacy of Cydonia oblonga Miller Fruit Extract in Diet-Induced Obesity Animal Models (식이유도 비만 동물모델에서 마르멜로추출물의 항비만 효능 비교 연구)

  • Jung Soon Hwang;Myeong Oh Hwang;Kisung Kwon;Eun Ji Kim
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.24 no.1
    • /
    • pp.13-24
    • /
    • 2024
  • Objectives: The objective of this study was to explore the anti-obesity effect of Cydonia oblonga Miller fruit extract (COME) and to compare its anti-obesity efficacy with Garcinia cambogia extract (GCE) in diet-induced obese mice. Methods: Five-week-old male C57BL/6 were allocated into four groups: control diet (CD), high-fat diet (HFD), HFD + 400 mg/kg body weight (BW)/day COME (H+C), or HFD + 400 mg/kg BW/day GCE (H+G) groups. COME or GCE was administered once a day by oral gavage for eight weeks. Body weight, body fat percentage, fat weight, and biochemical parameters in serum were measured. The expressions of transcription factors and their target genes in epididymal adipose tissues were analyzed by reverse transcription polymerase chain reaction. Results: COME reduced body weight, weight gain, body fat percentage, total white adipose tissue weight, adipocyte size, and serum levels of insulin and leptin in high-fat diet-induced obese C57BL/6 mice. COME suppressed the mRNA expressions of CCAAT/enhancer binding proteinα, peroxisome proliferator-activated receptorγ, sterol-regulatory element-binding protein-1c, fatty acid synthase, and adipocyte protein 2 and increased carnitine palmitoyl transferase 1 mRNA expression in epidydimal adipose tissues. The anti-obesity efficacy of COME was found to be similar to that of GCE at the same dose. However, COME more effectively decreased adipose tissue weights, epididymal adipocyte size, serum insulin and leptin compared to GCE. Conclusions: These results demonstrated that COME is not toxic and exhibits anti-obesity efficacy at a level similar to that of GCE, suggesting that COME may be applicable as an anti-obesity agent.

Induction of HSP27 and HSP70 by constitutive overexpression of Redd1 confers resistance of lung cancer cells to ionizing radiation

  • HYEON-OK JIN;SUNG-EUN HONG;JI-YOUNG KIM;MI-RI KIM;YOON HWAN CHANG;YOUNG JUN HONG;JIN KYUNG LEE;IN-CHUL PARK
    • Oncology Letters
    • /
    • v.41 no.5
    • /
    • pp.3119-3126
    • /
    • 2019
  • Redd1 is a stress response protein that functions as a repressor of mTORC1, a central regulator of protein translation, resulting in the inhibition of cell growth and metabolism. However, paradoxically, high Redd1 expression favors cancer progression and generates resistance to cancer therapy. Herein, we revealed that constitutive overexpression of Redd1 induced HSP27 and HSP70 expression in lung cancer cells. The expression of Redd1, HSP27 and HSP70 was highly increased in lung cancer tissues compared with that in normal lung tissues. Inhibition of HSP27 or HSP70 suppressed AKT phosphorylation, which was induced by constitutive overexpression of Redd1 and enhanced the inhibitory effects on viability of Redd1-overexpressing cells. Inhibition of AKT phosphorylation resulted in a decrease of HSP27 and HSP70 expression in Redd1-overexpressing cells. These data indicated that HSPs and AKT in Redd1-overexpressing cells positively regulated the function and expression of each other and were involved in lung cancer cell survival. Knockdown of HSP27, HSP70 or AKT enhanced ionizing radiation (IR) sensitivity, particularly in lung cancer cells in which Redd1 was stably overexpressed. Collectively, constitutive overexpression of Redd1 led to HSP27 and HSP70 induction and AKT activation, which were involved in lung cancer cell survival and resistance to IR, suggesting that Redd1 may be used as a therapeutic target for lung cancer.

miR-5191 functions as a tumor suppressor by targeting RPS6KB1 in colorectal cancer

  • HYUN-JU AN;MISUN PARK;JOON KIM;YOUNG-HOON HAN
    • International Journal of Oncology
    • /
    • v.55 no.4
    • /
    • pp.960-972
    • /
    • 2019
  • MicroRNAs (miRNAs/miRs) are a class of small non-coding RNAs that play pivotal roles in cancer physiology as important epigenetic regulators of gene expression. Several miRNAs have been previously discovered that regulate the proliferation of the colorectal cancer (CRC) cell line HCT116. In the present study, one of these miRNAs, miR-5191, was characterized as a tumor suppressor in CRC cells. Transfection with miR-5191 led to a significant decrease in cell proliferation, invasiveness, tumor sphere-forming ability and tumor organoid growth, as determined via trypan blue, Transwell, sphere culture and organoid culture assays, respectively. Flow cytometric analyses revealed that miR-5191 induced the cell cycle arrest and apoptosis of CRC cells. Additionally, the expression of miR-5191 was downregulated in CRC tumor tissues compared with in normal tissues, as measured by reverse transcription-quantitative PCR analysis. Ribosomal protein S6 kinase β1 (RPS6KB1) was identified as a direct target of miR-5191. Ectopic expression of RPS6KB1 suppressed the function of miR-5191. Intratumoral injection of miR-5191 mimic suppressed tumor growth in HCT116 xenografts. These findings suggested a novel tumor-suppressive function for miR-5191 in CRC, and its potential applicability for the development of anticancer miRNA therapeutics.

Expression of brain-derived neurotrophic factor and neurotrophic tyrosine receptor kinase-2 in bovine testes

  • Jaewoo Choi;Heejun Jung;Yubin Song;Minjung Yoon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.39 no.3
    • /
    • pp.194-200
    • /
    • 2024
  • Background: Brain-derived neurotrophic factor (BDNF) and its receptor, neurotrophic tyrosine receptor kinase-2 (NTRK2), are well known for their roles in the central nervous and animal reproductive systems. Several studies have observed the extensive expression of BDNF and NTRK2 in non-neuronal tissues, especially reproductive organs. However, most of these studies focused on ovarian development and regulation; thus, scientific research on BDNF and NTRK2 in males is required to determine their roles in the male reproductive system. Therefore, this study aimed to investigate BDNF and NTRK2 expression in bovine testes. Methods: Testes were collected from six Hanwoo bulls (6-8 months old). Reverse transcription-polymerase chain reaction (RT-PCR) analysis was performed to investigate the mRNA expression of BDNF and NTRK2 in the testes. Western blot analysis was performed to verify the cross-reactivity of BDNF and NTRK2 antibodies with bovine testicular tissues. Immunohistochemistry was conducted to determine BDNF and NTRK2 protein expression in the testes. Results: RT-PCR analysis revealed BDNF and NTRK2 mRNA expression in bovine testes. In Western blotting, BDNF and NTRK2 protein bands were observed at 32 and 45 kDa, respectively. Immunofluorescence demonstrated BDNF expression in the nuclei of spermatogonia and Sertoli cells as well as in the cytoplasm of Leydig cells. NTRK2 was exclusively expressed in Sertoli cells. These results suggest that BDNF plays a potential role in spermatogenesis via BDNF and NTRK2 signaling in bovine testes, a finding supported by previous results in different animal species. Conclusions: The expression patterns of BDNF and NTRK2 indicate their functional importance in the bovine reproductive system.

Physiological functions of the TRPM4 channels via protein interactions

  • Cho, Chang-Hoon;Lee, Young-Sun;Kim, Eunju;Hwang, Eun Mi;Park, Jae-Yong
    • BMB Reports
    • /
    • v.48 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • Transient Receptor Potential, Melastatin-related, member 4 (TRPM4) channels are $Ca^{2+}$-activated $Ca^{2+}$-impermeable cation channels. These channels are expressed in various types of mammalian tissues including the brain and are implicated in many diverse physiological and pathophysiological conditions. In the past several years, the trafficking processes and regulatory mechanism of these channels and their interacting proteins have been uncovered. Here in this minireview, we summarize the current understanding of the trafficking mechanism of TRPM4 channels on the plasma membrane as well as heteromeric complex formation via protein interactions. We also describe physiological implications of protein-TRPM4 interactions and suggest TRPM4 channels as therapeutic targets in many related diseases.

Lycopersicon Eculentum C2H2-type Zinc Finger Protein Induced by Oxidative Stress Especially

  • Seong, Eun-Soo;Lee, Ji-Yeon;Yu, Chang-Yeon;Yang, Deok-Chun;Eom, Seok-Hyun;Cho, Dong-Ha
    • Journal of Plant Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.167-172
    • /
    • 2007
  • A tomato zinc-finger protein gene, LeZFP1, encoding the Cys2/His2-type zinc-finger transcription factor was searched from cDNA microarray analysis of gene expression following induction of the overexpressed tomato transgenic plants showing resistance for pathogen and abiotic stresses. The full-length cDNA of LeZFP1 encoded a protein of 261 amino acid residues. Analysis of the deduced amino acid sequence of LeZFP1 revealed that it shares high sequence identity with pepper CAZFP1 (81% identity). We found that single copy of LeZFP1 gene is present in the tomato genome through southern blot analysis. The LeZFP1 transcripts were constitutively expressed in the tomato mature and young leaves, but were detectable weakly in the flower, stem and root. The LeZFP1 transcripts were significantly reduced in treated leaf tissues with NaCl and mannitol. The LeZFP1 gene was induced by oxidative stress especially. Our results indicated that LeZFP1 may play a role function involved in oxidative stress signaling pathways.