DOI QR코드

DOI QR Code

Therapeutic effects of paeoniflorin on irritable bowel syndrome in rats

  • Lei Wang (Department of Pharmacy, Tianjin Second People's Hospital) ;
  • Jinyan Lei (Tianjin Institute of Hepatology) ;
  • Zeyu Zhao (School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine) ;
  • Jianwei Jia (Tianjin Institute of Hepatology) ;
  • Li Wang (Department of Pharmacy, Tianjin Second People's Hospital)
  • Received : 2022.03.25
  • Accepted : 2022.10.14
  • Published : 2023.05.31

Abstract

Background: Irritable bowel syndrome (IBS) is a functional bowel disorder (FBD). Objectives: To assess the therapeutic effects of paeoniflorin (PF) on IBS in rats. Method: Sixty male Sprague-Dawley rats were randomly divided into normal, model, positive drug, low-dose PF, medium-dose PF and high-dose PF groups (n = 10). After gavage for 2 consecutive weeks, the effect of PF on abdominal pain symptoms was assessed based on the abdominal withdrawal reflex (AWR) score, fecal water content and pathological changes in colon tissues. D-lactate, interleukin-1β (IL-1β), transforming growth factor-β (TGF-β) and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay, and phosphorylated nuclear factor kappa B (p-NF-κB) p65 was detected by Western blotting. The abundance and diversity changes of intestinal flora were explored using 16S ribosomal RNA sequencing. Result: In PF groups, the mucosal morphology of colon tissues was intact, and the glands were arranged neatly and structured clearly, without obvious inflammatory cell infiltration. Compared with the model group, PF groups had significantly elevated pain threshold, and mRNA and protein levels of zonula occludens-1 (ZO-1) and occludin, decreased AWR score at 20 mmHg pressure, fecal water content, mRNA levels of IL-1β, TGF-β, and TNF-α, protein level of p-NF-κB p65 and level of serum D-lactate, and reduced levels of serum IL-1β, TGF-β, and TNF-α (p < 0.05, p < 0.01). PF groups had higher abundance of Lactobacillus, Akkermansia, Alistipes, and Bacteroides, but lower abundance of Desulfovibrio, Parasutterella, and Enterococcus than those of the model group. Conclusions: PF exerts therapeutic effects on IBS in rats probably by regulating the intestinal flora, and then up-regulating the expressions of ZO-1 and occludin in colon tissue while down-regulating the levels of IL-1β, TGF-β, TNF-α, D-lactate and p-NF-κB p65.

Keywords

Acknowledgement

This study was financially supported by Tianjin Medical Key Construction Discipline Fund Project (No. 2021-492).

References

  1. Wilson B, Rossi M, Kanno T, Parkes GC, Anderson S, Mason AJ, et al. β-Galactooligosaccharide in conjunction with low FODMAP diet improves irritable bowel syndrome symptoms but reduces fecal bifidobacteria. Am J Gastroenterol. 2020;115(6):906-915.  https://doi.org/10.14309/ajg.0000000000000641
  2. Liu Y, Xiao W, Yu L, Tian F, Wang G, Lu W, et al. Evidence from comparative genomic analyses indicating that Lactobacillus-mediated irritable bowel syndrome alleviation is mediated by conjugated linoleic acid synthesis. Food Funct. 2021;12(3):1121-1134.  https://doi.org/10.1039/D0FO02616F
  3. Chang KM, Lee MH, Lin HH, Wu SL, Wu HC. Does irritable bowel syndrome increase the risk of interstitial cystitis/bladder pain syndrome? A cohort study of long term follow-up. Int Urogynecol J Pelvic Floor Dysfunct. 2021;32(5):1307-1312.  https://doi.org/10.1007/s00192-021-04711-3
  4. Ma Q, Ouyang Y, Meng F, Noolvi MN, Avvaru SP, More UA, et al. A review of pharmacological and clinical studies on the application of Shenling Baizhu San in treatment of ulcerative colitis. J Ethnopharmacol. 2019;244:112105. 
  5. Bao CH, Wang CY, Li GN, Yan YL, Wang D, Jin XM, et al. Effect of mild moxibustion on intestinal microbiota and NLRP6 inflammasome signaling in rats with post-inflammatory irritable bowel syndrome. World J Gastroenterol. 2019;25(32):4696-4714.  https://doi.org/10.3748/wjg.v25.i32.4696
  6. Hou JJ, Wang X, Li Y, Su S, Wang YM, Wang BM. The relationship between gut microbiota and proteolytic activity in irritable bowel syndrome. Microb Pathog. 2021;157:104995. 
  7. Wang YH, Li B, Cai GX, Yang H. Comparative study on effect of three preparations of Xiaoyao formula on soothing liver and strengthening spleen. Zhongguo Zhongyao Zazhi. 2012;37(19):2951-2955. 
  8. Li C, Ding L, Ding F, Hu S, Wang L, Chen J. Influence of ingredient combination and peoniflorin content on the blood-nourishing,liver-soothing and pain-relieving actions of Radix Paeoniae Alba. Zhongyao Xinyao Yu Linchuang Yaoli. 2011;22(1):54-56.
  9. Yu HY, Liu MG, Liu DN, Shang GW, Wang Y, Qi C, et al. Antinociceptive effects of systemic paeoniflorin on bee venom-induced various 'phenotypes' of nociception and hypersensitivity. Pharmacol Biochem Behav. 2007;88(2):131-140. https://doi.org/10.1016/j.pbb.2007.07.013
  10. Sun H, Li X, Chen W, Jia F, Su J, Zhang B, et al. Effect of probiotics and dietary fiber combined with pinaverium bromide on intestinal flora in patients with irritable bowel syndrome. Am J Transl Res. 2021;13(12):14039-14045. 
  11. Hong KB, Seo H, Lee JS, Park Y. Effects of probiotic supplementation on post-infectious irritable bowel syndrome in rodent model. BMC Complement Altern Med. 2019;19(1):195. 
  12. Tabata K, Matsumoto K, Watanabe H. Paeoniflorin, a major constituent of peony root, reverses muscarinic M1-receptor antagonist-induced suppression of long-term potentiation in the rat hippocampal slice. Jpn J Pharmacol. 2000;83(1):25-30.  https://doi.org/10.1016/S0021-5198(19)30623-7
  13. Zhang D, Chang S, Li X, Shi H, Jing B, Chen Z, et al. Therapeutic effect of paeoniflorin on chronic constriction injury of the sciatic nerve via the inhibition of Schwann cell apoptosis. Phytother Res. 2022;36(6):2572-2582.  https://doi.org/10.1002/ptr.7472
  14. Pittayanon R, Lau JT, Yuan Y, Leontiadis GI, Tse F, Surette M, et al. Gut microbiota in patients with irritable bowel syndrome-a systematic review. Gastroenterology. 2019;157(1):97-108.  https://doi.org/10.1053/j.gastro.2019.03.049
  15. Ansari F, Pourjafar H, Tabrizi A, Homayouni A. The effects of probiotics and prebiotics on mental disorders: a review on depression, anxiety, Alzheimer, and autism spectrum disorders. Curr Pharm Biotechnol. 2020;21(7):555-565.  https://doi.org/10.2174/1389201021666200107113812
  16. Kamphuis JB, Guiard B, Leveque M, Olier M, Jouanin I, Yvon S, et al. Lactose and fructo-oligosaccharides increase visceral sensitivity in mice via glycation processes, increasing mast cell density in colonic mucosa. Gastroenterology. 2020;158(3):652-663.e6.  https://doi.org/10.1053/j.gastro.2019.10.037
  17. Chen L, Li L, Han Y, Lv B, Zou S, Yu Q. Tong-Fu-Li-Fei decoction exerts a protective effect on intestinal barrier of sepsis in rats through upregulating ZO-1/occludin/claudin-1 expression. J Pharmacol Sci. 2020;143(2):89-96.  https://doi.org/10.1016/j.jphs.2020.02.009
  18. Li Z, Chang L, Ren X, Hu Y, Chen Z. Modulation of rat kidney stone crystallization and the relative oxidative stress pathway by green tea polyphenol. ACS Omega. 2021;6(2):1725-1731.  https://doi.org/10.1021/acsomega.0c05903
  19. Ji HJ, Kang N, Chen T, Lv L, Ma XX, Wang FY, et al. Shen-Ling-Bai-Zhu-San, a spleen-tonifying Chinese herbal formula, alleviates lactose-induced chronic diarrhea in rats. J Ethnopharmacol. 2019;231:355-362.  https://doi.org/10.1016/j.jep.2018.07.031
  20. Benitez-Paez A, Hartstra AV, Nieuwdorp M, Sanz Y. Gut microbiota survey at species-and strain-level using long-amplicon sequencing, and its application to trace species engraftment. bioRxiv. 2021 Oct 27. https://doi.org/10.1101/2020.09.11.292896.
  21. Dannenberg L, Zikeli D, Benkhoff M, Ahlbrecht S, Kelm M, Levkau B, et al. Targeting the human microbiome and its metabolite TMAO in cardiovascular prevention and therapy. Pharmacol Ther. 2020;213:107584. 
  22. Jeffery IB, O'Toole PW, Ohman L, Claesson MJ, Deane J, Quigley EM, et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut. 2012;61(7):997-1006.  https://doi.org/10.1136/gutjnl-2011-301501
  23. Rajilic-Stojanovic M, Biagi E, Heilig HG, Kajander K, Kekkonen RA, Tims S, et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology. 2011;141(5):1792-1801.  https://doi.org/10.1053/j.gastro.2011.07.043
  24. Zhu HM, Li L, Li SY, Yan Q, Li F. Effect of water extract from Berberis heteropoda Schrenk roots on diarrhea-predominant irritable bowel syndrome by adjusting intestinal flora. J Ethnopharmacol. 2019;237:182-191.  https://doi.org/10.1016/j.jep.2019.03.045
  25. Wang X, Qi Q, Wang Y, Wu H, Jin X, Yao H, et al. Gut microbiota was modulated by moxibustion stimulation in rats with irritable bowel syndrome. Chin Med. 2018;13(1):63. 
  26. Carroll IM, Ringel-Kulka T, Keku TO, Chang YH, Packey CD, Sartor RB, et al. Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2011;301(5):G799-G807. https://doi.org/10.1152/ajpgi.00154.2011
  27. Xu JH, Ao H, Hong JQ, Zhou JY, Weng YJ, Zhang JD, et al. Paeoniflorin inhibits lipopolysaccharideinduced microglia inflammation and phagocytosis through IL-10-STAT3 signaling pathway. Chin J Biochem Mol Biol. 2017;33:169-175.
  28. Liu J, Zhao Z, Wei Y, Xu F, Zhang H, Li M, et al. Inhibitory effect of paeoniflorin on inflammatory chemokines and their receptor in a mouse model of asthma. Acta Lab Anim Sci Sin. 2016;24:460-464.
  29. Zhou YX, Gong XH, Zhang H, Peng C. A review on the pharmacokinetics of paeoniflorin and its antiinflammatory and immunomodulatory effects. Biomed Pharmacother. 2020;130:110505. 
  30. Sheehan D, Moran C, Shanahan F. The microbiota in inflammatory bowel disease. J Gastroenterol. 2015;50(5):495-507.  https://doi.org/10.1007/s00535-015-1064-1
  31. Wu XX, Huang XL, Chen RR, Li T, Ye HJ, Xie W, et al. Paeoniflorin prevents intestinal barrier disruption and inhibits lipopolysaccharide (LPS)-induced inflammation in Caco-2 cell monolayers. Inflammation. 2019;42(6):2215-2225.  https://doi.org/10.1007/s10753-019-01085-z
  32. Egerton S, Donoso F, Fitzgerald P, Gite S, Fouhy F, Whooley J, et al. Investigating the potential of fish oil as a nutraceutical in an animal model of early life stress. Nutr Neurosci. 2022;25(2):356-378.  https://doi.org/10.1080/1028415X.2020.1753322
  33. Lemaire M, Dou S, Cahu A, Formal M, Le Normand L, Rome V, et al. Addition of dairy lipids and probiotic Lactobacillus fermentum in infant formula programs gut microbiota and entero-insular axis in adult minipigs. Sci Rep. 2018;8(1):11656. 
  34. Derrien M, Collado MC, Ben-Amor K, Salminen S, de Vos WM. The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol. 2008;74(5):1646-1648.  https://doi.org/10.1128/AEM.01226-07
  35. Derrien M, Van Baarlen P, Hooiveld G, Norin E, Muller M, de Vos WM. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Front Microbiol. 2011;2:166. 
  36. Schroeder BO. Fight them or feed them: how the intestinal mucus layer manages the gut microbiota. Gastroenterol Rep (Oxf ). 2019;7(1):3-12.  https://doi.org/10.1093/gastro/goy052
  37. Png CW, Linden SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol. 2010;105(11):2420-2428. https://doi.org/10.1038/ajg.2010.281