• 제목/요약/키워드: proportional-integral-derivative control

검색결과 201건 처리시간 0.028초

신경회로망 기반 자기동조 퍼지 PID 제어기 설계 (Design of a Neural Network Based Self-Tuning Fuzzy PID Controller)

  • 임정흠;이창구
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권1호
    • /
    • pp.22-30
    • /
    • 2001
  • This paper describes a neural network based fuzzy PID control scheme. The PID controller is being widely used in industrial applications. However, it is difficult to determine the appropriated PID gains in nonlinear systems and systems with long time delay and so on. In this paper, we re-analyzed the fuzzy controller as conventional PID controller structure, and proposed a neural network based self tuning fuzzy PID controller of which output gains were adjusted automatically. The tuning parameters of the proposed controller were determined on the basis of the conventional PID controller parameters tuning methods. Then they were adjusted by using proposed neural network learning algorithm. Proposed controller was simple in structure and computational burden was small so that on-line adaptation was easy to apply to. The experiment on the magnetic levitation system, which is known to be heavily nonlinear, showed the proposed controller's excellent performance.

  • PDF

Design of Multivariable PID Controllers: A Comparative Study

  • Memon, Shabeena;Kalhoro, Arbab Nighat
    • International Journal of Computer Science & Network Security
    • /
    • 제21권8호
    • /
    • pp.212-218
    • /
    • 2021
  • The Proportional Integral Derivative (PID) controller is the most popular industrial controller and more than 90% process industries use this controller. During the past 50 years, numerous good tuning methods have been proposed for Single Input Single Output Systems. However, design of PI/PID controllers for multivariable processes is a challenge for the researchers. A comparative study of three PID controllers design methods has been carried-out. These methods include the DS (Direct Synthesis) method, IMC (Internal model Control) method and ETF (Effective Transfer Function) method. MIMO PID controllers are designed for a number of 2×2, 3×3 and 4×4 process models with multiple delays. The performance of the three methods has been evaluated through simulation studies in Matlab/Simulink environment. After extensive simulation studies, it is found that the Effective Transfer Function (ETF) Method produces better output responses among two methods. In this work, only decentralized methods of PID controllers have been studied and investigated.

VCA(Voice Coil Actuator) 구동 평형저울에서 VCA 자기 감쇠 특성이 측정 속도에 미치는 영향 (Effect of Magnetic Damping on Measurement Speed in a VCA-driven Balancing Scale)

  • 안지윤;안중환
    • 센서학회지
    • /
    • 제28권4호
    • /
    • pp.246-250
    • /
    • 2019
  • In this study, in conjunction with a SIMULINK program based on system modeling of a voice-coil-actuator (VCA)-driven balancing scale, a proportional-integral-derivative control algorithm is implemented, and weighing characteristics are investigated through experiments and simulations. The extent to which the back electromotive force induced in the VCA-driven circuit and the magnetic damping induced by the coil wound bobbin of VCA affect the weighing speed is also investigated.

Design of Multivariable PID Controllers: A Comparative Study

  • Memon, Shabeena;Kalhoro, Arbab Nighat
    • International Journal of Computer Science & Network Security
    • /
    • 제21권9호
    • /
    • pp.11-18
    • /
    • 2021
  • The Proportional Integral Derivative (PID) controller is the most popular industrial controller and more than 90% process industries use this controller. During the past 50 years, numerous good tuning methods have been proposed for Single Input Single Output Systems. However, design of PI/PID controllers for multivariable processes is a challenge for the researchers. A comparative study of three PID controllers design methods has been carried-out. These methods include the DS (Direct Synthesis) method, IMC (Internal model Control) method and ETF (Effective Transfer Function) method. MIMO PID controllers are designed for a number of 2×2, 3×3 and 4×4 process models with multiple delays. The performance of the three methods has been evaluated through simulation studies in Matlab/Simulink environment. After extensive simulation studies, it is found that the Effective Transfer Function (ETF) Method produces better output responses among two methods. In this work, only decentralized methods of PID controllers have been studied and investigated.

Determination of PID Coefficients for the Ascending and Descending System Using Proportional Valve of a Rice Transplanter

  • Siddique, Md. Abu Ayub;Kim, Wan-Soo;Baek, Seung-Yun;Kim, Yeon-Soo;Choi, Chang-Hyun;Kim, Yong-Joo;Park, Jin-Kam
    • Journal of Biosystems Engineering
    • /
    • 제43권4호
    • /
    • pp.331-341
    • /
    • 2018
  • Purpose: This study was conducted to develop a linear Proportional-Integral-Derivative (PID) control algorithm for the ascending and descending system of a rice transplanter and to analyze its response characteristics. Methods: A hydraulic model using a single-acting actuator, proportional valve and a PID control algorithm were developed for the ascending and descending system. The PID coefficients are tuned using the Ziegler-Nichols (Z-N) method and the characteristics of unit step response are analyzed to select the PID coefficients at various pump speeds. Results: Results showed that the performance of the PID controller was superior in any condition. It was found that the highest settling time and maximum overshoot were less than 0.210 s and 5%, respectively at all pump speed. It was determined that the steady state errors were 0% in all the cases. The lowest overshoot and settling time were calculated to be nearly 2.56% and 0.205 s, respectively at the pump rated speed (2650 rpm). Conclusions: The results indicated that the developed PID control algorithm would be feasible for the ascending and descending system of a rice transplanter. Finally, it would be helpful to plant the seedlings uniformly and improve the performance of the rice transplanter.

이종 상태 정보를 고려한 이차 다개체 시스템의 PID 기반 일치 및 편대 제어 (PID-based Consensus and Formation Control of Second-order Multi-agent System with Heterogeneous State Information)

  • 강민재;탁한호
    • 융합신호처리학회논문지
    • /
    • 제24권2호
    • /
    • pp.103-111
    • /
    • 2023
  • 일치기법은 이웃한 개체 간의 정보교환을 통하여 개체들의 상태를 동일한 상태로 수렴시키는 것이 목적이며 다개체 시스템의 제어를 위해 많은 연구가 진행되고 있다. 실제 시스템에서는 각 개체의 측정 변수가 서로 다르거나 통신상의 정보 손실이 발생할 수 있고, 통신상의 안정성을 위하여 각 상태에 대한 서로 다른 네트워크를 구성해야 할 수 있다. 또한, 시스템에 존재하는 입력 포화 및 외란으로 인하여 그룹의 불안정성을 야기할 수도 있다. 따라서 본 논문에서는 이종 상태 정보와 입력 포화 및 외란을 고려하여 다개체 시스템의 군집을 위한 PID(Proportional-Integral-Derivative) 기반의 일치 제어 기술을 연구한다. 구체적으로 2차 시스템으로 모델링된 다중 추종 개체들과 단일 리더 개체를 고려하였고, 오차 시스템의 안정성 판별을 통하여 일치를 달성하기 위한 조건을 분석하였다. 제안된 알고리즘은 위치 그래프의 연결성만 보장된다면 일치를 달성할 수 있음을 확인하였고, 일치 알고리즘을 확장하여 다개체 시스템에 대한 편대 제어 문제를 연구하였다. 마지막으로 모의실험을 통하여 제안된 알고리즘의 유효성을 검증하였다.

미분 평균 궤환에 기초한 잡음 독립 PId 제어 (Noise-Free PID Control Based on Feedback of Averaged Derivative)

  • 문영현;김영민;최병곤;박정도
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1094-1097
    • /
    • 1999
  • This paper presents a new PID control scheme based on the feedback of averaged derivatives to realize a noise-free differential control. The PID(Proportional, Integral and Differential) control is still one of the control methods in most wide use. In the paper, the conventional PID control adopting filtering technique is analyzed with new interpretation of filtering function. In order to overcome the drawbacks of the conventional PID control, this paper introduces the feedback of averaged derivatives in the noisy environment, and suggests a new PID control scheme using delay components to realize a noise-free differential control. The proposed PID control yields good performance much similar to the original system response in case of no noises. The proposed control scheme has been tested for the load frequency control of power systems.

  • PDF

선박용 발전기 시스템의 강인 적응형 전압 제어 (Robust Adaptive Voltage Control of Electric Generators for Ships)

  • 조현철
    • 제어로봇시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.326-331
    • /
    • 2016
  • This paper presents a novel robust adaptive AC8B exciter system against synchronous generators for ships. A PID (proportional integral derivative) control framework, which is a part of the AC8B exciter system, is simply composed of nominal and auxiliary control configurations. For selecting these proper parameter values, the former is conventionally chosen based on the experience and knowledge of experts, and the latter is optimally estimated via a neural networks optimization procedure. Additionally, we propose an online parameter learning-based auxiliary control to practically cope with deterioration of control performance owing to uncertainty in electric generator systems. Such a control mechanism ensures the robustness and adaptability of an AC8B exciter to enhance control performance in real-time implementation. We carried out simulation experiments to test the reliability of the proposed robust adaptive AC8B exciter system and prove its superiority through a comparative study in which a conventional PID control-based AC8B exciter system is similarly applied to our simulation experiments under the same simulation scenarios.

Design and experiment with a plastic mulch wrapper using a hydraulic system

  • Park, Hyo Je;Lee, Sang Yoon;Park, Yong Hyun;Kim, Young Keun;Choi, Il Su;Nam, Young Jo;Kweon, Gi Young
    • 농업과학연구
    • /
    • 제47권1호
    • /
    • pp.43-58
    • /
    • 2020
  • Mulching plastic is used for the purpose of maintaining soil temperature, moisture, and weed and pest prevention in agriculture. Any remaining plastic after use may contaminate the soil and damage crop growth. To solve this problem, mulching plastic wrappers have been studied and developed, but the actual use rate is quite low due to their poor performance and frequent tearing of the plastic on the field. In this study, we developed a tractor attachable mulching plastic wrapper to minimize the tearing of the mulched plastic. The developed mulching plastic wrapper consists of hydraulic motors and pumps, valves, a microcontroller, and sensors. The collecting speed of the plastic mulch was calculated considering the tractor's travel speed and the radius of the collecting drum. A proportional controller was designed to control the rotating speed of the hydraulic motor as the plastic was wound around the collection drum and the radius increased. The performance of an indoor experiment was quite promising because the difference between the collecting speed predicted by the calculation and the actual collecting speed was 2.71 rpm. Based on a field verification test, the speed difference was max. 14.28 rpm; thus, the, proportional integral derivative (PID) controller needs to be considered to control the drum speed precisely. Another issue was found when the soil covered at the edge of the plastic was hardened or the road surface was uneven, the speed control was unstable, and the plastic was torn. In future research, vibrational plows will be equipped to break-up the harden soil for collecting the plastic smoothly.

협조제어에 의한 2축 연속 회전시스템의 고정도 위치동기 제어 (Precise Position Synchronous Control of Two Axes Rotating Systems by Cooperative Control)

  • 정석권;김영진;유삼상
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.2078-2090
    • /
    • 2001
  • This paper deals with a precise position synchronous control by a cooperative control method of two axes rotating systems. First, the system's dynamics including motor drives described by a motor circuit equation and Newton's kinetic formulation about rotating system. Next, based on conventional PID(Proportional, Integral, Derivative) control law, current and speed controller are designed very simply to follow up reference speed correctly under some disturbances. Also, position synchronous controller designed to minimize position errors according to integration of speed errors between two motors. Then, the proposed control enables the distributed drives by a software control algorithm to behave in a way as if they are mechanically hard coupled in axes. Further, the stabilities and robustness or the proposed system are investigated. Finally, the proposed system presented here is shown to be more precise position synchronous motion than conventional systems through some simulations and experiments.