• 제목/요약/키워드: propionate

검색결과 515건 처리시간 0.023초

Safety effect of fermented oyster extract on the endocrine disruptor assay in vitro and in vivo

  • Lee, Hyesook;Hwangbo, Hyun;Ji, Seon Yeong;Oh, Seyeon;Byun, Kyung-A;Park, Joung-Hyun;Lee, Bae-Jin;Kim, Gi-Young;Choi, Yung Hyun
    • Fisheries and Aquatic Sciences
    • /
    • 제24권10호
    • /
    • pp.330-339
    • /
    • 2021
  • Oyster (Crassostrea gigas) is a marine bivalve mollusk widely distributed in coastal areas, and have been long widely used in industrial resources. Several studies demonstrated that fermented oyster (FO) extract attribute to bone health, but whether administration of FO play as an endocrine disruptor has not been studied. Therefore, in the present study, we investigated the effect of FO on the endocrine system in vitro and in vivo. As the results of the competitive estrogen receptor (ER) and androgen receptor (AR) binding affinities, FO was not combined with ER-α, ER-β, and AR. However, 17β-estradiol and testosterone, used as positive control, were interacted with ER and AR, respectively. Meanwhile, oral administration of 100 mg/kg and 200 mg/kg of FO doesn't have any harmful effect on the body weight, androgen-dependent sex accessory organs, estrogen-dependent-sex accessory organs, kidney, and liver in immature rats. In addition, FO supplementation has no effect on the serum levels of luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone, and 17β-estradiol. However, the relative weight of androgen- and estrogen-dependent organs were significantly increased by subcutaneously injection of 4.0 mg/kg of testosterone propionate (TP) and by orally administration of 1.0 ㎍ of 17α-ethynyl estradiol (EE) in immature male and female rats, respectively. Furthermore, TP and EE administration markedly decreased the serum LH and FSH levels, which are similar those of mature Sprague-Dawley (SD) rat. Furthermore, the testosterone and 17β-estradiol levels were significantly enhanced in TP and EE-treated immature rats. Taken together, our findings showed that FO does not interact with ER and AR, suggesting consequentially FO does not play as a ligand for ER and AR. Furthermore, oral administration of FO did not act as an endocrine disruptor including androgenic activity, estrogenic activity, and abnormal levels of sex hormone, indicating FO may ensure the safety on endocrine system to develop dietary supplement for bone health.

Water Extract of Ecklonia cava Protects against Fine Dust (PM2.5)-Induced Health Damage by Regulating Gut Health

  • Park, Seon Kyeong;Kang, Jin Yong;Kim, Jong Min;Kim, Min Ji;Lee, Hyo Lim;Moon, Jong Hyun;Jeong, Hye Rin;Kim, Hyun-Jin;Heo, Ho Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권7호
    • /
    • pp.927-937
    • /
    • 2022
  • To confirm the therapeutic effect of the water extract from Ecklonia cava (WEE) against PM2.5 induced systemic health damage, we evaluated gut health with a focus on the microbiota and metabolites. Systemic damage in mice was induced through PM2.5 exposure for 12 weeks in a whole-body chamber. After exposure for 12 weeks, body weight and food intake decreased, and WEE at 200 mg/kg body weight (mpk) alleviated these metabolic efficiency changes. In addition, PM2.5 induced changes in the length of the colon and fecal water content. The administration of the WEE at 200 mpk oral dose effectively reduced changes in the colon caused by PM2.5 exposure. We also attempted to confirm whether the effect of the WEE is mediated via regulation of the microbiota-gut-brain axis in mice with PM2.5 induced systemic damage. We examined changes in the fecal microbiota and gut metabolites such as short-chain fatty acids (SCFAs) and kynurenine metabolites. In the PM2.5 exposed group, a decrease in the abundance of Lactobacillus (Family: Lactobacillaceae) and an increase in the abundance of Alistipes (Family: Rikenellaceae) were observed, and the administration of the WEE showed a beneficial effect on the gut microbiota. In addition, the WEE effectively increased the levels of SCFAs (acetate, propionate, and butyrate). Furthermore, kynurenic acid (KYNA), which is a critical neuroprotective metabolite in the gut-brain axis, was increased by the administration of the WEE. Our findings suggest that the WEE could be used as a potential therapeutic against PM2.5 induced health damage by regulating gut function.

Effect of Selected Inoculant Applications on Chemical Compositions and Fermentation Characteristics of High Moisture Rye Silage

  • Lee, Seong Shin;Jeong, Seung Min;Seo, Myeong Ji;Joo, Young Ho;Paradhipta, Dimas Hand Vidya;Seong, Pil Nam;Kim, Sam Churl
    • 한국초지조사료학회지
    • /
    • 제42권3호
    • /
    • pp.155-161
    • /
    • 2022
  • The aim of this study was to investigate the effect of isolated lactic acid bacteria (LAB) on the quality of high moisture rye silage. Rye forage (Secale cereale L.) was harvested at the heading stage (27.3% of dry matter (DM)) and cut into approximately 3-5 cm lengths. Then, the forage divided into 4 treatments with different inoculants: 1) No additives (CON); 2) Lactobacillus brevis strain 100D8 at a 1.2 × 105 colony-forming unit (cfu)/g of fresh forage (LBR); 3) Leuconostoc holzapfelii strain 5H4 at a 1.0 × 105 cfu/g of fresh forage (LHO); and 4) Mixture of LBR and LHO (1:1 ratio) applied at a 1.0 × 105 cfu/g of fresh forage (MIX). About 3 kg of forage from each treatment was ensiled into a 20 L mini-bucket silo in quadruplicate for 100 days. After silo opening, silage was collected for analyses of chemical compositions, in vitro nutrient digestibilities, fermentation characteristics, and microbial enumerations. The CON silage had the highest concentrations of neutral detergent fiber and acid detergent fiber (p = 0.006; p = 0.008) and a lowest in vitro DM digestibility (p < 0.001). The pH was highest in CON silage, while lowest in LBR and MIX silages (p < 0.001). The concentrations of ammonia-N, lactate, and acetate were highest in LBR silage (p = 0.008; p < 0.001; p < 0.001). Propionate and butyrate concentrations were highest in CON silage (p = 0.004; p < 0.001). The LAB and yeast counts were higher in CON and LHO silages compare to LBR and MIX silages (p < 0.001). However, the mold did not detect in all treatments. Therefore, this study could conclude that L. brevis 100D8 and Leu. holzapfelii strain 5H4 can improve the digestibility and anti-fungal activity of high moisture rye silage.

Rumen bacteria influence milk protein yield of yak grazing on the Qinghai-Tibet plateau

  • Fan, Qingshan;Wanapat, Metha;Hou, Fujiang
    • Animal Bioscience
    • /
    • 제34권9호
    • /
    • pp.1466-1478
    • /
    • 2021
  • Objective: Ruminants are completely dependent on their microbiota for rumen fermentation, feed digestion, and consequently, their metabolism for productivity. This study aimed to evaluate the rumen bacteria of lactating yaks with different milk protein yields, using high-throughput sequencing technology, in order to understand the influence of these bacteria on milk production. Methods: Yaks with similar high milk protein yield (high milk yield and high milk protein content, HH; n = 12) and low milk protein yield (low milk yield and low milk protein content, LL; n = 12) were randomly selected from 57 mid-lactation yaks. Ruminal contents were collected using an oral stomach tube from the 24 yaks selected. High-throughput sequencing of bacterial 16S rRNA gene was used. Results: Ruminal ammonia N, total volatile fatty acids, acetate, propionate, and isobutyrate concentrations were found to be higher in HH than LL yaks. Community richness (Chao 1 index) and diversity indices (Shannon index) of rumen microbiota were higher in LL than HH yaks. Relative abundances of the Bacteroidetes and Tenericutes phyla in the rumen fluid were significantly increased in HH than LL yaks, but significantly decreased for Firmicutes. Relative abundances of the Succiniclasticum, Butyrivibrio 2, Prevotella 1, and Prevotellaceae UCG-001 genera in the rumen fluid of HH yaks was significantly increased, but significantly decreased for Christensenellaceae R-7 group and Coprococcus 1. Principal coordinates analysis on unweighted UniFrac distances revealed that the bacterial community structure of rumen differed between yaks with high and low milk protein yields. Furthermore, rumen microbiota were functionally enriched in relation to transporters, ABC transporters, ribosome, and urine metabolism, and also significantly altered in HH and LL yaks. Conclusion: We observed significant differences in the composition, diversity, fermentation product concentrations, and function of ruminal microorganisms between yaks with high and low milk protein yields, suggesting the potential influence of rumen microbiota on milk protein yield in yaks. A deeper understanding of this process may allow future modulation of the rumen microbiome for improved agricultural yield through bacterial community design.

Effects of L-glutamine supplementation on degradation rate and rumen fermentation characteristics in vitro

  • Suh, Jung-Keun;Nejad, Jalil Ghassemi;Lee, Yoon-Seok;Kong, Hong-Sik;Lee, Jae-Sung;Lee, Hong-Gu
    • Animal Bioscience
    • /
    • 제35권3호
    • /
    • pp.422-433
    • /
    • 2022
  • Objective: Two follow-up studies (exp. 1 and 2) were conducted to determine the effects of L-glutamine (L-Gln) supplementation on degradation and rumen fermentation characteristics in vitro. Methods: First, rumen liquor from three cannulated cows was used to test L-Gln (50 mM) degradation rate and ammonia-N production at 6, 12, 24, 36, and 48 h after incubation (exp. 1). Second, rumen liquor from two cannulated steers was used to assess the effects of five levels of L-Gln including 0% (control), 0.5%, 1%, 2%, and 3% at 0, 3, 6, 12, 24, 36, and 48 h after incubation on fermentation characteristics, gas production, and degradability of nutrients (exp. 2). Results: In exp. 1, L-Gln degradation rate and ammonia-N concentrations increased over time (p<0.001). In exp. 2, pH was reduced significantly as incubation time elapsed (p<0.001). Total gas production tended to increase in all groups as incubation time increased. Acetate and propionate tended to increase by increasing glutamine (Gln) levels, whereas levels of total volatile fatty acids (VFAs) were the highest in 0.5% and 3% Gln groups (p<0.001). The branched-chain VFA showed both linear and quadratic effects showing the lowest values in the 1% Gln group particularly after 6 h incubation (p<0.001). L-Gln increased crude protein degradability (p<0.001), showing the highest degradability in the 0.5% Gln group regardless of incubation time (p<0.05). Degradability of acid detergent fiber and neutral detergent fiber showed a similar pattern showing the highest values in 0.5% Gln group (p<0.10). Conclusion: Although L-Gln showed no toxicity when it was supplemented at high dosages (2% to 3% of DM), 0.5% L-Gln demonstrated the positive effects on main factors including VFAs production in-vitro. The results of this study need to be verified in further in-vivo study.

Available phosphorus levels modulate gene expression related to intestinal calcium and phosphorus absorption and bone parameters differently in gilts and barrows

  • Julia Christiane Votterl;Jutamat Klinsoda;Simone Koger;Isabel Hennig-Pauka;Doris Verhovsek;Barbara U. Metzler-Zebeli
    • Animal Bioscience
    • /
    • 제36권5호
    • /
    • pp.740-752
    • /
    • 2023
  • Objective: Dietary phytase increases bioavailability of phytate-bound phosphorus (P) in pig nutrition affecting dietary calcium (Ca) to P ratio, intestinal uptake, and systemic utilization of both minerals, which may contribute to improper bone mineralization. We used phytase to assess long-term effects of two dietary available P (aP) levels using a one-phase feeding system on gene expression related to Ca and P homeostasis along the intestinal tract and in the kidney, short-chain fatty acids in stomach, cecum, and colon, serum, and bone parameters in growing gilts and barrows. Methods: Growing pigs (37.9±6.2 kg) had either free access to a diet without (Con; 75 gilts and 69 barrows) or with phytase (650 phytase units; n = 72/diet) for 56 days. Samples of blood, duodenal, jejunal, ileal, cecal, and colonic mucosa and digesta, kidney, and metacarpal bones were collected from 24 pigs (6 gilts and 6 barrows per diet). Results: Phytase decreased daily feed intake and average daily gain, whereas aP intake increased with phytase versus Con diet (p<0.05). Gilts had higher colonic expression of TRPV5, CDH1, CLDN4, ZO1, and OCLN and renal expression of TRPV5 and SLC34A3 compared to barrows (p<0.05). Phytase increased duodenal expression of TRPV5, TRPV6, CALB1, PMCA1b, CDH1, CLDN4, ZO1, and OCLN compared to Con diet (p<0.05). Furthermore, phytase increased expression of SCL34A2 in cecum and of FGF23 and CLDN4 in colon compared to Con diet (p<0.05). Alongside, phytase decreased gastric propionate, cecal valerate, and colonic caproate versus Con diet (p<0.05). Phytase reduced cortical wall thickness and index of metacarpal bones (p<0.05). Conclusion: Gene expression results suggested an intestinal adaptation to increased dietary aP amount by increasing duodenal trans- and paracellular Ca absorption to balance the systemically available Ca and P levels, whereas no adaption of relevant gene expression in kidney occurred. Greater average daily gain in barrows related to higher feed intake.

Effects of feeding different levels of dietary corn silage on growth performance, rumen fermentation and bacterial community of post-weaning dairy calves

  • Lingyan Li;Jiachen Qu;Huan Zhu;Yuqin Liu;Jianhao Wu;Guang Shao;Xianchao Guan;Yongli Qu
    • Animal Bioscience
    • /
    • 제37권2호
    • /
    • pp.261-273
    • /
    • 2024
  • Objective: The objective of this study was to evaluate the growth performance, rumen fermentation parameters and bacterial community of post-weaning dairy calves in response to five diets varying in corn silage (CS) inclusion. Methods: A total of forty Holstein weaned bull calves (80±3 days of age;128.2±5.03 kg at study initiation) were randomized into five groups (8 calves/group) with each receiving one of five dietary treatments offered as total mixed ration in a 123-d feeding study. Dietary treatments were control diet (CON; 0% CS dry matter [DM]); Treatment 1 (T1; 27.2% CS DM); Treatment 2 (T2; 46.5% CS DM); Treatment 3 (T3; 54.8% CS DM); and Treatment 4 (T4; 67.2% CS DM) with all diets balanced for similar protein and energy concentration. Results: Results showed that calves offered CS had greater average daily gain, body length and chest depth growth, meanwhile altered rumen fermentation indicated by decreased rumen acetate concentrations. Principal coordinate analysis showed the rumen bacterial community structure was affected by varying CS inclusion diets. Bacteroidetes and Firmicutes were the predominant bacterial phyla in the calf rumens across all treatments. At the genus level, the abundance of Bacteroidales_RF16_group was increased, whereas Unclassified_Lachnospiraceae was decreased for calves fed CS. Furthermore, Spearman's correlation test between the rumen bacteria and rumen fermentation parameters indicated that Bacteroidales_RF16_group and Unclassified Lachnospiraceae were positively correlated with propionate and acetate, respectively. Conclusion: The results of the current study suggested that diet CS inclusion was beneficial for post-weaning dairy calf growth, with 27.2% to 46.5% CS of diet DM recommended to achieve improved growth performance. Bacteroidales_RF16_group and Unclassified Lachnospiraceae play an important role in the rumen fermentation pattern for post-weaning calves fed CS.

배합사료의 부패 동안 발생하는 미생물학적 및 영양학적 변화 (Microbiological and Chemical Changes of Complete Feed during Spoilage)

  • 이권정;연제성;김주현;김삼철;문형인;전체옥;이상석;김동운;김수기
    • 생명과학회지
    • /
    • 제25권10호
    • /
    • pp.1148-1155
    • /
    • 2015
  • 가축의 배합사료는 가축의 성장을 유지하기 위한 충분한 영양소를 함유하고 있어 적절한 온도와 습도하에서 부패되기 쉽다. 착유우 사료를 여름철 고온 다습한 환경 조건인 수분 33%, 온도 30℃에서 15일 동안 부패시키면서 일어나는 미생물 및 화학적 변화를 조사하였다. pH는 최초 6.29에서 4.66으로, 수분활성은 0.99에서 0.95으로 각각 감소하였다. 세균은 6.2×106~1.6×107 CFU/g에서 5일째에 최대 2.1×109 CFU/g까지 증가하였으며 이후 108 CFU/g수준을 유지하였다. 곰팡이는 약 103에서 8.0×104 CFU/g으로 증가하였다. 세균은 Acinetobacter oleivorans, Pediococcus acidilactici, Acinetobacter oleivorans, Weissella cibaria 및 Methylobacterium komagatae이 성장하였고, 곰팡이는 Fusarium속과 Mucor속이 분리되었다. 10일까지는 수분 함량은 증가하였고(p<0.01), 조단백질 함량은 큰 변화가 없었으나 조지방은 약 6.0%에서 5.5%로 감소하였다(p<0.01). 조섬유와 조회분은 각각 2.0~3.0%, 4.5~4.8%의 범위에서 변화되었으나 유의적인 차이는 없었다. 총에너지는 4,400 kcal/kg로 거의 변화가 없었다. 사료가 부패되면서 젖산과 프로피온산은 증가하였고 아세트산은 검출되지 않았다(p<0.01). 제랄레논은 59.2 μg/kg에서 623.8 μg/kg으로 약 10.5배가 증가하였다. 결론적으로 사료부패가 일어나는 동안은 pH 감소, 생균수의 증가 및 다양한 화학적 변화가 관찰되었다.

Linolenic Acid in Association with Malate or Fumarate Increased CLA Production and Reduced Methane Generation by Rumen Microbes

  • Li, X.Z.;Choi, S.H.;Jin, G.L.;Yan, C.G.;Long, R.J.;Liang, C.Y.;Song, Man K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권6호
    • /
    • pp.819-826
    • /
    • 2009
  • An in vitro study was conducted to investigate the effect of malate or fumarate on fermentation characteristics, and production of conjugated linoleic acid (CLA) and methane ($CH_4$) by rumen microbes when incubated with linolenic acid (${\alpha}-C_{18:3}$). Sixty milligrams of ${\alpha}-C_{18:3}$ alone (LNA), or ${\alpha}-C_{18:3}$ with 24 mM malic acid (M-LNA) or ${\alpha}-C_{18:3}$ with 24 mM fumaric acid (F-LNA) were added to the 150 ml culture solution consisting of 75 ml strained rumen fluid and 75ml McDougall's artificial saliva. Culture solution for incubation was also made without malate, fumarate and ${\alpha}-C_{18:3}$ (Control). Two grams of feed consisting of 70% concentrate and 30% ground alfalfa (DM basis) were also added to the culture solution of each treatment. In vitro incubation was made anaerobically in a shaking incubator up to 12 h at $39^{\circ}C$. Supplementation of malate (M-LNA) or fumarate (F-LNA) increased pH at 6 h (p<0.01) and 12 h (p<0.001) incubation times compared to control and linolenic acid (LNA) treatments. Both malate and fumarate did not influence the ammonia-N concentration. Concentration of total VFA in culture solution was higher for M-LNA and F-LNA supplementation than for control and LNA treatments from 6 h (p<0.040) to 12 h (p<0.027) incubation times, but was not different between malate and fumarate for all incubation times. Molar proportion of $C_3$ was increased by F-LNA and M-LNA supplementation from 6 h (p<0.0001) to 12 h (p<0.004) incubation times compared to control and LNA treatments. No differences in $C_{3}$ proportion, however, were observed between M-LNA and F-LNA treatments. Accumulated total gas production for 12h incubation was increased (p<0.0002) by M-LNA or F-LNA compared to control or LNA treatment. Accumulated $CH_4$ production for 12 h incubation, however, was greatly reduced (p<0.0002) by supplementing malate or fumarate compared to the control, and its production from M-LNA or F-LNA treatment was smaller than that from LNA treatment. Methane production from LNA, M-LNA or F-LNA treatment was steadily lower (p<0.01 - p<0.001) from 3 h incubation time than that from the control, and was also lower for M-LNA or F-LNA treatment at incubation times of 6 h (p<0.01) and 9 h (p<0.001) than for LNA treatment. Methane production from LNA, however, was reduced (p<0.01 - p<0.001) from 3 h to 9 h incubation times compared to the control. Both malate and fumarate increased concentration of trans11-$C_{18:1}$ from 3 h to 12 h incubation (p<0.01), cis9,trans11-CLA up to 6 h incubation (p<0.01 - p<0.01), trans10,cis12-CLA at 3 h (p<0.05) and 12 h (p<0.01), and total CLA for all incubation times (p<0.05) compared to corresponding values for the ${\alpha}-C_{18:3}$ supplemented treatment (LNA). In conclusion, malate and fumarate rechanneled the metabolic $H_2 pathway to production of propionate and CLA, and depressed the process of biohydrogenation and methane generation. Linolenic acid alone would also be one of the optimistic alternatives to suppress the $CH_4$ generation.

반추위 섬유소분해 박테리아 배양액의 투여 수준에 따른 한우 반추위 발효에 미치는 영향 (Effects of Increasing Inclusion Levels of Rumen Cellulolytic Bacteria Culture on In vivo Ruminal Fermentation Patterns in Hanwoo Heifers)

  • 박중국;정찬성;박도연;김현철;이승철;김창현
    • Journal of Animal Science and Technology
    • /
    • 제51권1호
    • /
    • pp.45-52
    • /
    • 2009
  • 본 연구는 홀스타인 젖소의 반추위에서 순수분리 및 동정된 섬유소 분해균인 Ruminococcus flavefaciens (H-20) 및 Fibrobactor succinogenes (H-23)의 혼합 배양액(DFM)을 수준별로 반추동물에 적용하였을 때 반추위발효와 섬유소분해효소 활성에 미치는 영향을 평가하였다. 대사시험은 반추위 fistula가 장착된 12개월령 한우 암소 4두를 이용하여 $4\times4$ Latin square 방법으로 실시되었다. 모든 처리구는 기초사료로, 농후사료 2 kg에 톨페스큐와 오차드그라스의 혼합건초 3 kg을 1일 2 회로 나누어 균등 급여하였으며, DFM을 사용하지 않은 처리구(control), 기초사료를 포함하여 1% (50 ml/day, H20 + H23), 3% (150 ml/day, H20 + H23) 및 5% (250 ml/day, H20 + H23) 수준의 네 처리군으로 나누어, 사료 급여시 DFM을 반추위 cannula 안으로 직접 주입하여 실시하였다. 본 실험 결과 급여 후 모든 시간에서, 처리구는 반추위액내 pH의 유의적 차이가 나타나지 않았으나, 반추위 암모니아 질소의 농도에서 DFM투여 후 1시간에 3% 처리구(19.47 mg/dl)는 5% 처리구(17.27 mg/dl)와 차이는 없었지만, 대조구 및 1% 처리구(14.5 및 14.9 mg/dl)와 비교하여 유의적으로 높은 농도를 보였다(p<0.05). 섬유소분해효소활력은 전체적으로 유의한 효과가 나타나지 않았으나, xylanase는 0시간에 5% 처리구($119.49\;{\mu}mol$/ml/min)가 3% 처리구($72.02\;{\mu}mol$/ml/min)와 비교하여 유의적으로 높은 농도를 보였다(p<0.05). VFA 농도는 butyric acid에서 급여후 1시간에 대조구(15.71 mM)와 비교하여 3% 처리구(24.48 mM)에서 유의적으로 높은 농도를 보였다(p<0.05). 이러한 결과로 미루어 보아 혐기성 섬유소분해 박테리아 배양액의 공급은 최소 3% 이상에서 반추위발효에 개선효과가 있는 것으로 나타났다.