DOI QR코드

DOI QR Code

Effects of Increasing Inclusion Levels of Rumen Cellulolytic Bacteria Culture on In vivo Ruminal Fermentation Patterns in Hanwoo Heifers

반추위 섬유소분해 박테리아 배양액의 투여 수준에 따른 한우 반추위 발효에 미치는 영향

  • Park, Joong-Kook (Graduate School of Bio-Environment and Information Technology, Hankyong National University) ;
  • Jeong, Chan-Sung (Gyeonggi Livestock Veterinary Research Institute) ;
  • Park, Do-Yeun (Graduate School of Bio-Environment and Information Technology, Hankyong National University) ;
  • Kim, Hyun-Cheol (Graduate School of Bio-Environment and Information Technology, Hankyong National University) ;
  • Lee, Seung-Cheol (Gyeonggi Livestock Veterinary Research Institute) ;
  • Kim, Chang-Hyun (School of Animal Life and Environment Science, Hankyong National University)
  • 박중국 (한경대학교 생물환경.정보통신전문대학원) ;
  • 정찬성 (경기도 축산위생연구소) ;
  • 박도연 (한경대학교 생물환경.정보통신전문대학원) ;
  • 김현철 (한경대학교 생물환경.정보통신전문대학원) ;
  • 이승철 (경기도 축산위생연구소) ;
  • 김창현 (한경대학교 동물생명환경과학부)
  • Received : 2008.07.11
  • Accepted : 2009.02.18
  • Published : 2009.02.01

Abstract

This experiment was conducted to observe the effects of anaerobic cellulolytic bacteria culture (Ruminococcus flavefaciens H-20 and Fibrobactor succinogenes H-23) on in vivo ruminal fermentation characteristics in Hanwoo heifers. Four ruminally cannulated Hanwoo heifers ($221\pm7.5kg$) receiving a basal diet containing 3 kg of mixture hay (tall fescue and ochardgrass) and 2 kg of concentrate per day were in a $4\times4$ Latin square with 21-day periods. Treatments were the basal diet without the culture additive (control), the basal diet plus 50 ml/day of bacteria culture of H-20 and H-23 (1%), 150 ml/day of H-20 and H-23 (3%), and 250 ml/day of H-20 and H-23 (5%). In the whole experimental periods, ruminal pH did not differ between treatments. However, the concentration of ruminal ammonia-N was increased in the 3% treatment relative to control and the 1% treatment at 1 hr post-feeding (p<0.05). Avicelase and CMCase (carboxymethyl cellulase) activities in rumen fluid showed no significant difference among treatments. However, xylanase activity was higher in the 5% (119.49, xylose ${\mu}mol$/ml/min) than the 3% treatment (71.02, xylose ${\mu}mol$/ml/min) at 0 hr post-feeding (p<0.05). Concentrations of ruminal total VFA, acetate, propionate and valerate were unaffected by treatments, while butyrate was higher in the 3% treatment (24.48 mM) than control (15.71 mM) at 1 hr post-feeding (p<0.05). Results indicate that minimum 3% inclusion of cellulolytic bacteria cultures improved ruminal fermentation, especially ammonia-N concentration and butyric acid production.

본 연구는 홀스타인 젖소의 반추위에서 순수분리 및 동정된 섬유소 분해균인 Ruminococcus flavefaciens (H-20) 및 Fibrobactor succinogenes (H-23)의 혼합 배양액(DFM)을 수준별로 반추동물에 적용하였을 때 반추위발효와 섬유소분해효소 활성에 미치는 영향을 평가하였다. 대사시험은 반추위 fistula가 장착된 12개월령 한우 암소 4두를 이용하여 $4\times4$ Latin square 방법으로 실시되었다. 모든 처리구는 기초사료로, 농후사료 2 kg에 톨페스큐와 오차드그라스의 혼합건초 3 kg을 1일 2 회로 나누어 균등 급여하였으며, DFM을 사용하지 않은 처리구(control), 기초사료를 포함하여 1% (50 ml/day, H20 + H23), 3% (150 ml/day, H20 + H23) 및 5% (250 ml/day, H20 + H23) 수준의 네 처리군으로 나누어, 사료 급여시 DFM을 반추위 cannula 안으로 직접 주입하여 실시하였다. 본 실험 결과 급여 후 모든 시간에서, 처리구는 반추위액내 pH의 유의적 차이가 나타나지 않았으나, 반추위 암모니아 질소의 농도에서 DFM투여 후 1시간에 3% 처리구(19.47 mg/dl)는 5% 처리구(17.27 mg/dl)와 차이는 없었지만, 대조구 및 1% 처리구(14.5 및 14.9 mg/dl)와 비교하여 유의적으로 높은 농도를 보였다(p<0.05). 섬유소분해효소활력은 전체적으로 유의한 효과가 나타나지 않았으나, xylanase는 0시간에 5% 처리구($119.49\;{\mu}mol$/ml/min)가 3% 처리구($72.02\;{\mu}mol$/ml/min)와 비교하여 유의적으로 높은 농도를 보였다(p<0.05). VFA 농도는 butyric acid에서 급여후 1시간에 대조구(15.71 mM)와 비교하여 3% 처리구(24.48 mM)에서 유의적으로 높은 농도를 보였다(p<0.05). 이러한 결과로 미루어 보아 혐기성 섬유소분해 박테리아 배양액의 공급은 최소 3% 이상에서 반추위발효에 개선효과가 있는 것으로 나타났다.

Keywords

References

  1. AOAC. 1995. Official Methods of Analysis. 16th ed. Association of Official Analytical Chemist, Washington, DC.
  2. Beauchemin, K. A., Rode, L. M. and Sewalt, V. J. H. 1995. Fibrolytic enzymes increase fiber digestibility and growth rate of steers fed dry forages. Can. J. Anim. Sci. 75:641-644. https://doi.org/10.4141/cjas95-096
  3. Beauchemin, K. A., Jones, S. D. M., Rode, L. M. and Sewalt, V. J. H. 1997. Effects of fibrolytic enzyme in corn or barley diets on performance and carcass characteristics of feedlot cattle. Can. J. Anim. Sci. 77:645-653. https://doi.org/10.4141/A97-050
  4. Beauchemin, K. A., Rode, L. M. and Karren, D. 1999. Use of feed enzymes in feedlot finishing diets. Can. J. Anim. Sci. 79:243-246. https://doi.org/10.4141/A98-124
  5. Bryant, M. P. and Burkey, L. A. 1953. Cultural methods and some characteristics of some of the more numberous groups of bacteria in the bovine rumen. J. Dairy Sci. 36:205-217. https://doi.org/10.3168/jds.S0022-0302(53)91482-9
  6. Bryant, M. P. 1973. Nutritional requirements of predominant rumen cellulolytic bacteria. Fed. Proc. 32:1809-1813.
  7. Chaney, A. L. and Marbach, E. P. 1962. Modified reagents for determination of urea and ammonia. Clin. Biochem. 8:130-132.
  8. Dehority, B. A. and Scott, H. W. 1967. Extent of cellulose and hemicellulose digestion in various forage by pure cultures of rumen bacteria. J. Dairy Sci. 50:1136-1141. https://doi.org/10.3168/jds.S0022-0302(67)87579-9
  9. Duncan, D. B. 1955. Multiple range and multiple F test. Biometrics. 11:1-42. https://doi.org/10.2307/3001478
  10. Erwin, E. S., Marco, S. J. and Emery, E. M. 1961. Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44:1768-1771. https://doi.org/10.3168/jds.S0022-0302(61)89956-6
  11. Forsberg, C. W., Beveridge, T. J. and Hellistroom, A. 1981. Cellulase and xylanase release from Bacteroides succinogenes and its importance in the rumen environment. Appl. Environ. Microbiol. 42:886-896.
  12. Greve, L. C., Labavitch, J. M. and Hungate, R. E. 1984. ${\alpha}-L-arabinofuranosidase$ from Ruminococcus albus 8: Purification and possible role in hydrolysis of alfalfa cell wall. Appl. Environ. microbiol. 47:1135-1140.
  13. Harrison, G. A., Hemken, R. W., Dawson, K. A., Harmon, R. J. and Barker, B. K. 1988. Influence of addition of yeast culture supplement to diets of lactating cows on ruminal fermentation and microbial population, J. Dairy Sci. 71:2967-2975. https://doi.org/10.3168/jds.S0022-0302(88)79894-X
  14. Hristov, A. N., Basel, C. E., Melgar, A., Foley, A. E., Ropp, J. K., Hunt, C. W. and Tricarico, J. M. 2008. Effect of exogenous polysaccharide-degrading enzyme preparations on ruminal fermentation and digestibility of nutrients in dairy cows. Anim. Feed Sci. Technol. 145: 182-193. https://doi.org/10.1016/j.anifeedsci.2007.05.051
  15. Hristov, A. N., MCAllister, T. A. and Cheng, K. J. 2000. Intraruminal supplementation with increasing levels of exogenous polysaccharide-degrading enzymes: effects on nutrient digestion in cattle fed a barley grain diet. J. Anim. Sci. 78:477-487. https://doi.org/10.2527/2000.782477x
  16. Hungate, R. E. 1966. The rumen and its microbes. Academic Press Inc. New York.
  17. Kudo, H., Cheng, K. J. and Costerton, J. W. 1987a. Interactions between Treponema bryantii and cellulolytic bacteria in the in vitro degradation of straw cellulose. Can. J. Microbiol. 33:244-248. https://doi.org/10.1139/m87-041
  18. Kudo, H., Cheng, K. J. and Costerton, J. W. 1987b. Electron microscopic study of the methylcellulose-mediated detachment of cellulolytic bacteria from cellulose fibers. Can. J. Microbiol. 33:267-272. https://doi.org/10.1139/m87-045
  19. Kung, L., Jr., Treacher, R. J., Nauman, G. A., Smagala, A. M., Endres, K. M. and Cohen, M. A. 2000. The effect of treating forages with fibrolytic enzymes on its nutritive value and lactation performance of dairy cows. J. Dairy Sci. 83:115-122. https://doi.org/10.3168/jds.S0022-0302(00)74862-4
  20. Kung, L., Jr., Cohen, M. A., Rode, L. M. and Treacher, R. J. 2002. The effect of fibrolytic enzymes sprayed onto forages and fed in a total mixed ratio to lactating dairy cows. J. Dairy Sci. 85:2396-2402. https://doi.org/10.3168/jds.S0022-0302(02)74321-X
  21. McAllister, T. A., Oosting, S. J., Popp, J. D., Mir, Z., Yanke, L. J., Hristov, A. N., Treacher, R. J. and Cheng, K. -J. 1999. Effect of exogenous enzymes on digestibility of barley silage and growth performance of feedlot cattle. Can. J. Anim. Sci. 79:353-360. https://doi.org/10.4141/A98-099
  22. McDermid, K., Mackenzie, C. R. and Forsberg, C. W. 1990. Esterase activities of Fibrobacter succinogenes subsp. succinogenes S85. Appl. Environ. Microbiol. 56: 127-132.
  23. Muck, R. E., O’kiely, P. and Moran, J. 1990. Low pH grass silage. Teagasc Anim. Prod. Res. Rep., 1988-1989, pp. 77.
  24. Pettipher, G. L. and Latham, M. J. 1979. Production of enzymes degrading plant cell walls and fermentation of cellobiose by Ruminococcus flavefaciens in batch and continuous culture. J. Gen. Microbiol. 110:29-38. https://doi.org/10.1099/00221287-110-1-29
  25. Phipps, R. H., Wilkinson, J. I. D., Jonker, L. J., Tarrant, M., Jones, A. K. and Hodge, A. 2000. Effect of monensin on milk production of Holstein-Friesian dairy cow. J. Dairy Sci. 83:2789-2794. https://doi.org/10.3168/jds.S0022-0302(00)75176-9
  26. Santra, A., Chaturvedi, O. H., Tripathi, M. K., Kumar, R. and Karim, S. A. 2003. Effect of dietary sodium bicarbonate supplementation on fermentation characteristics and ciliate protozoal population in rumen of lambs. Small Ruminant Research 47:203-212. https://doi.org/10.1016/S0921-4488(02)00241-9
  27. SAS. 2003. $SAS/STAT^{\circleR}$ Software for PC. SAS Institute Inc., Cary, NC, USA.
  28. Symanowski, J. T., Green, H. B., Wagner, J. R., Wilkinson, J. I. D., Davies, J. S., Hirsmstedt, M. R., Allen, M. S., Block, E., Brennan, J. J., Head, H. H., Kennelly, J. J., Nielsen, J. N., Nocek, J. E., Van Der List, J. J. and Whitlow, L. W. 1999. Milk production and efficiency of cows fed monensin. J. Dairy Sci. 82 (Suppl 1):171.(Abstr.)
  29. Van Soest, P. J., Roberts, J. B. and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  30. Wang, Y., Alexander, T. W. and McAllister, T. A. 2004. In vitro effects of Monensin and Tween 80 on ruminal fermentation of barley grain:barley silage-based diets for beef cattle. Animal Feed Sci. and Tech. 116:197-209. https://doi.org/10.1016/j.anifeedsci.2004.06.006
  31. Williams, A. G. and Coleman. 1992. The Rumen Protozoa Springer-Verlag Inc. New York, NY. pp. 441.
  32. William, P. E. V. and Newbold, C. J. 1990. Rumen probiosis: The effects of novel microorganism on rumen fermentation and ruminant productivity. In: Haresign W. and Cole, F. J. A (Ed.) Recent Advances in Animal Nutrition. Butterworths, London. pp. 211-217.
  33. Windham, W. R. and Akin, D. E. 1984. Rumen fungi and forage fiber degradation. Appl Environ Microbial. 48:473-476.
  34. 농림부.농촌진흥청 축산기술연구소, 2002, 한국사양표준(젖소). 상록사.
  35. 이기영. 2006. 반추위로부터 분리된 혐기성 섬유소분해 박테리아의 혼합배양에 의한 발효 특성에 관한 연구. 한경대학교 석사학위 논문.
  36. 이성훈, 서인준. 2005. 반추가축영양에 있어서 액상미생물제제의 첨가가 In Vitro 발효성상과 섬유소분해효소활성에 미치는 영향. 한국동물자원과학회지 47:789-804. https://doi.org/10.5187/JAST.2005.47.5.789

Cited by

  1. Effect of feeding mixed microbial culture fortified with trace minerals on ruminal fermentation, nutrient digestibility, nitrogen and trace mineral balance in Sheep vol.58, pp.1, 2016, https://doi.org/10.1186/s40781-016-0102-8
  2. Effects of Supplemental Level and Period of Fibrolytic Enzyme on Feed Efficiency and Carcass Characteristics of Hanwoo Steers in Fattening Phase vol.48, pp.4, 2014, https://doi.org/10.14397/jals.2014.48.4.175