Acknowledgement
This study was supported by the Basic Science Research Program through the National Research Foundation (NRF) of Korea (NRF 2018R1D1A3B07043398) funded by the Ministry of Education and Korean Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (2017029713), Republic of Korea. Seon Kyeong Park, Jin Yong Kang, Jong Min Kim, Min Ji Kim, Hyo Lim Lee, Jong Hyun Moon, Hye Rin Jeong were supported by the BK21 program, Ministry of Education, Republic of Korea.
References
- Zhang J, Zeng X, Du X, Pan K, Song L, Song W, et al. 2019. Parental PM2.5 exposure-promoted development of metabolic syndrome in offspring is associated with the changes of immune microenvironment. Toxicol. Sci. 170: 415-426. https://doi.org/10.1093/toxsci/kfz109
- Choi JH, Kim JS, Kim YC, Kim YS, Chung NH, Cho MH. 2004. Comparative study of PM2.5- and PM10-induced oxidative stress in rat lung epithelial cells. J. Vet. Sci. 5: 11-18. https://doi.org/10.4142/jvs.2004.5.1.11
- Shou Y, Huang Y, Zhu X, Liu C, Hu Y, Wang H. 2019. A review of the possible associations between ambient PM2.5 exposures and the development of Alzheimer's disease. Ecotoxicol. Environ. Safety 174: 344-352. https://doi.org/10.1016/j.ecoenv.2019.02.086
- Fu P, Guo X, Cheung FMH, Yung KKL. 2019. The association between PM2.5 exposure and neurological disorders: a systematic review and meta-analysis. Sci. Total Environ. 655: 1240-1248. https://doi.org/10.1016/j.scitotenv.2018.11.218
- Salim SY, Kaplan GG, Madsen KL. 2014. Air pollution effects on the gut microbiota: a link between exposure and inflammatory disease. Gut Microbes 5: 215-219. https://doi.org/10.4161/gmic.27251
- Wang W, Zhou J, Chen M, Huang X, Xie X, Li W, et al. 2018. Exposure to concentrated ambient PM2.5 alters the composition of gut microbiota in a murine model. Part. Fibre Toxicol. 15: 17.
- Mutlu EA, Comba IY, Cho T, Engen PA, Yazici C, Soberanes S, et al. 2018. Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome. Environ. Pollut. 240: 817-830. https://doi.org/10.1016/j.envpol.2018.04.130
- Wiedlocha M, Marcinowicz P, Janoska-Jazdzik M, Szulc A. 2021. Gut microbiota, kynurenine pathway and mental disorders-Review. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 106: 110145.
- Kennedy PJ, Cryan JF, Dinan TG, Clarke G. 2017. Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology 112: 399-412. https://doi.org/10.1016/j.neuropharm.2016.07.002
- Dinan TG, Cryan JF. 2017. The microbiome-gut-brain axis in health and disease. Gastroenterol. Clin. North Am. 46: 77-89. https://doi.org/10.1016/j.gtc.2016.09.007
- van der Meulen TA, Harmsen HJ, Bootsma H, Spijkervet FK, Kroese FG, Vissink A. 2016. The microbiome-systemic diseases connection. Oral Dis. 22: 719-734. https://doi.org/10.1111/odi.12472
- Chen Y, Guillemin GJ. 2009. Kynurenine pathway metabolites in humans: disease and healthy states. Int. J. Tryptophan Res. 2: IJTR. S2097.
- Liang Y, Xie S, He Y, Xu M, Qiao X, Zhu Y, et al. 2022. Kynurenine pathway metabolites as biomarkers in Alzheimer's disease. Dis. Markers. 2022: 9484217.
- Choi DM, Ko YW, Kang R-S, Kim JH. 2015. Morphological and genetic variability among Ecklonia cava (Laminariales, Phaeophyceae) populations in Korea. Algae 30: 89-101. https://doi.org/10.4490/algae.2015.30.2.089
- Wijesekara I, Yoon NY, Kim SK. 2010. Phlorotannins from Ecklonia cava (Phaeophyceae): Biological activities and potential health benefits. Biofactors 36: 408-414. https://doi.org/10.1002/biof.114
- Wijesinghe W, Jeon Y-J. 2012. Exploiting biological activities of brown seaweed Ecklonia cava for potential industrial applications: a review. Int. J. Food Sci. Nutr. 63: 225-235. https://doi.org/10.3109/09637486.2011.619965
- Park SK, Kang JY, Kim JM, Kim H-J, Heo HJ. 2021. Ecklonia cava attenuates PM2.5-induced cognitive decline through mitochondrial activation and anti-inflammatory effect. Mar. Drugs 19: 131.
- Lee S, Youn K, Kim DH, Ahn M-R, Yoon E, Kim O-Y, et al. 2018. Anti-neuroinflammatory property of phlorotannins from Ecklonia cava on Aβ25-35-induced damage in PC12 cells. Mar. Drugs 17: 7.
- Han M, Hur Y, Hwang J, Park J. 2017. Biological effects of blood-brain barrier disruption using a focused ultrasound. Biomed. Eng. Lett. 7: 115-120. https://doi.org/10.1007/s13534-017-0025-4
- Liu X, Cao S, Zhang X. 2015. Modulation of gut microbiota-brain axis by probiotics, prebiotics, and diet. J. Agric. Food Chem. 63: 7885-7895. https://doi.org/10.1021/acs.jafc.5b02404
- Kang JE, Park SK, Kang JY, Kim JM, Kwon BS, Park SH, et al. 2021. Actinidia arguta sprout as a natural antioxidant: Ameliorating effect on lipopolysaccharide-induced cognitive impairment. J. Microbiol. Biotechnol. 31: 51-62. https://doi.org/10.4014/jmb.2009.09012
- Virag D, Kiraly M, Drahos L, Edes AE, Gecse K, Bagdy G, et al. 2020. Development, validation and application of LC-MS/MS method for quantification of amino acids, kynurenine and serotonin in human plasma. J. Pharm. Biomed. Anal. 180: 113018.
- Wang L-S, Zhang M-D, Tao X, Zhou Y-F, Liu X-M, Pan R-L, et al. 2019. LC-MS/MS-based quantification of tryptophan metabolites and neurotransmitters in the serum and brain of mice. J. Chromatography B. Analyt. Biomed. Life Sci. 1112: 24-32. https://doi.org/10.1016/j.jchromb.2019.02.021
- Peters R, Ee N, Peters J, Booth A, Mudway I, Anstey KJ. 2019. Air pollution and dementia: a systematic review. J. Alzheimer's Dis. 70: S145-S163. https://doi.org/10.3233/JAD-180631
- Konturek S, Konturek J, Pawlik T, Brzozowski T. 2004. Brain-gut axis and its role in the control of food intake. J. Physiol. Pharmacol. 55: 137-154.
- Sun L-J, Li J-N, Nie Y-Z. 2020. Gut hormones in microbiota-gut-brain cross-talk. Chin. Med. J. 133: 826-833. https://doi.org/10.1097/CM9.0000000000000706
- Yang M, Jia W, Wang D, Han F, Niu W, Zhang H, et al. 2019. Effects and mechanism of constitutive TL1A expression on intestinal mucosal barrier in DSS-induced colitis. Dig. Dis. Sci. 64: 1844-1856. https://doi.org/10.1007/s10620-019-05580-z
- Wu L-H, Xu Z-L, Dong D, He S-A, Yu H. 2011. Protective effect of anthocyanins extract from blueberry on TNBS-induced IBD model of mice. Evid. Based Complement. Alternat. Med. 2011: 525462.
- Akbari P, Braber S, Alizadeh A, Verheijden KA, Schoterman MH, Kraneveld AD, et al. 2015. Galacto-oligosaccharides protect the intestinal barrier by maintaining the tight junction network and modulating the inflammatory responses after a challenge with the mycotoxin deoxynivalenol in human Caco-2 cell monolayers and B6C3F1 mice. J. Nutr. 145: 1604-1613. https://doi.org/10.3945/jn.114.209486
- Xue M, Ji X, Liang H, Liu Y, Wang B, Sun L, et al. 2018. The effect of fucoidan on intestinal flora and intestinal barrier function in rats with breast cancer. Food Funct. 9: 1214-1223. https://doi.org/10.1039/C7FO01677H
- Sun T, Liang H, Xue M, Liu Y, Gong A, Jiang Y, et al. 2020. Protective effect and mechanism of fucoidan on intestinal mucosal barrier function in NOD mice. Food Agric. Immunol. 31: 939-953. https://doi.org/10.1080/09540105.2020.1789071
- Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. 2015. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 26: 26191.
- Liu Y, Wang T, Si B, Du H, Liu Y, Waqas A, et al. 2021. Intratracheally instillated diesel PM2.5 significantly altered the structure and composition of indigenous murine gut microbiota. Ecotoxicol. Environ. Safety 210: 111903.
- Isolauri E, Sutas Y, Kankaanpaa P, Arvilommi H, Salminen S. 2001. Probiotics: effects on immunity. Am. Clin. Nutr. 73: 444s-450s. https://doi.org/10.1093/ajcn/73.2.444s
- Kong Y, Olejar KJ, On SL, Chelikani V. 2020. The potential of Lactobacillus spp. for modulating oxidative stress in the gastrointestinal tract. Antioxidants 9: 610.
- Kelley N, Jeltema D, Duan Y, He Y. 2019. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int. J. Mol. Sci. 20: 3328.
- Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. 2011. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141: 599-609. e593. https://doi.org/10.1053/j.gastro.2011.04.052
- Xu M, Mo X, Huang H, Chen X, Liu H, Peng Z, et al. 2020. Yeast β-glucan alleviates cognitive deficit by regulating gut microbiota and metabolites in Aβ1-42-induced AD-like mice. Int. J. Biol. Macromol. 161: 258-270. https://doi.org/10.1016/j.ijbiomac.2020.05.180
- Zheng L-X, Chen X-Q, Cheong K-L. 2020. Current trends in marine algae polysaccharides: the digestive tract, microbial catabolism, and prebiotic potential. Int. J. Biol. Macromol. 151: 344-354. https://doi.org/10.1016/j.ijbiomac.2020.02.168
- Martin-Gallausiaux C, Larraufie P, Jarry A, Beguet-Crespel F, Marinelli L, Ledue F, et al. 2018. Butyrate produced by commensal bacteria down-regulates indolamine 2, 3-dioxygenase 1 (IDO-1) expression via a dual mechanism in human intestinal epithelial cells. Front. Immunol. 9: 2838.
- Allison DJ, Ditor DS. 2014. The common inflammatory etiology of depression and cognitive impairment: a therapeutic target. J. Neuroinflamm. 11: 1-12. https://doi.org/10.1186/1742-2094-11-1
- Charoensiddhi S, Conlon MA, Vuaran MS, Franco CM, Zhang W. 2016. Impact of extraction processes on prebiotic potential of the brown seaweed Ecklonia radiata by in vitro human gut bacteria fermentation. J. Funct. Foods 24: 221-230. https://doi.org/10.1016/j.jff.2016.04.016
- Mudry JM, Alm PS, Erhardt S, Goiny M, Fritz T, Caidahl K, et al. 2016. Direct effects of exercise on kynurenine metabolism in people with normal glucose tolerance or type 2 diabetes. Diabetes Metab. Res. Rev. 32: 754-761. https://doi.org/10.1002/dmrr.2798
- Guidetti P, Okuno E, Schwarcz R. 1997. Characterization of rat brain kynurenine aminotransferases I and II. J. Neurosci. Res. 50: 457-465. https://doi.org/10.1002/(SICI)1097-4547(19971101)50:3<457::AID-JNR12>3.0.CO;2-3
- Cervenka I, Agudelo LZ, Ruas JL. 2017. Kynurenines: Tryptophan's metabolites in exercise, inflammation, and mental health. Science 357: eaaf9794.
- Mandi Y, Vecsei L. 2012. The kynurenine system and immunoregulation. J. Neural Transm. 119: 197-209. https://doi.org/10.1007/s00702-011-0681-y
- Muller N, Myint A-M, Schwarz MJ. 2009. The impact of neuroimmune dysregulation on neuroprotection and neurotoxicity in psychiatric disorders-relation to drug treatment. Dialogues Clin. Neurosci. 11: 319-332. https://doi.org/10.31887/DCNS.2009.11.3/nmueller
- Guillemin GJ, Williams KR, Smith DG, Smythe GA, Croitoru-Lamoury J, Brew BJ. 2003. Quinolinic acid in the pathogenesis of Alzheimer's disease, pp. 167-176. Developments in Tryptophan and Serotonin Metabolism, Ed. Springer
- Singh S, Kumar P. 2016. Neuroprotective activity of curcumin in combination with piperine against quinolinic acid induced neurodegeneration in rats. Pharmacology 97: 151-160. https://doi.org/10.1159/000443896
- Stone TW. 2000. Development and therapeutic potential of kynurenic acid and kynurenine derivatives for neuroprotection. Trends Pharmacol. Sci. 21: 149-154. https://doi.org/10.1016/S0165-6147(00)01451-6
- Foster AC, Vezzani A, French ED, Schwarcz R. 1984. Kynurenic acid blocks neurotoxicity and seizures induced in rats by the related brain metabolite quinolinic acid. Neurosci. Lett. 48: 273-278. https://doi.org/10.1016/0304-3940(84)90050-8
- Morales-Martinez A, Sanchez-Mendoza A, Martinez-Lazcano JC, Pineda-Farias JB, Montes S, El-Hafidi M, et al. 2017. Essential fatty acid-rich diets protect against striatal oxidative damage induced by quinolinic acid in rats. Nutr. Neurosci. 20: 388-395. https://doi.org/10.1080/1028415X.2016.1147683
- Parasram K. 2018. Phytochemical treatments target kynurenine pathway induced oxidative stress. Redox Rep. 23: 25-28. https://doi.org/10.1080/13510002.2017.1343223
- Savitz J. 2020. The kynurenine pathway: a finger in every pie. Mol. Psychiatry. 25: 131-147. https://doi.org/10.1038/s41380-019-0414-4
- Connor TJ, Starr N, O'Sullivan JB, Harkin A. 2008. Induction of indolamine 2, 3-dioxygenase and kynurenine 3-monooxygenase in rat brain following a systemic inflammatory challenge: a role for IFN-γ? Neurosci. Lett. 441: 29-34. https://doi.org/10.1016/j.neulet.2008.06.007
- Molteni R, Macchi F, Zecchillo C, Dell'Agli M, Colombo E, Calabrese F, et al. 2013. Modulation of the inflammatory response in rats chronically treated with the antidepressant agomelatine. Eur. Neuropsychopharmacol. 23: 1645-1655. https://doi.org/10.1016/j.euroneuro.2013.03.008