• Title/Summary/Keyword: property P$_{l}$

Search Result 454, Processing Time 0.026 seconds

LOCAL SPECTRAL THEORY II

  • YOO, JONG-KWANG
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.3_4
    • /
    • pp.487-496
    • /
    • 2021
  • In this paper we show that if A ∈ L(X) and B ∈ L(Y), X and Y complex Banach spaces, then A ⊕ B ∈ L(X ⊕ Y) is subscalar if and only if both A and B are subscalar. We also prove that if A, Q ∈ L(X) satisfies AQ = QA and Qp = 0 for some nonnegative integer p, then A has property (C) (resp. property (𝛽)) if and only if so does A + Q (resp. property (𝛽)). Finally, we show that A ∈ L(X, Y) and B, C ∈ L(Y, X) satisfying operator equation ABA = ACA and BA ∈ L(X) is subscalar with property (𝛿) then both Lat(BA) and Lat(AC) are non-trivial.

REPRESENTING NATURAL NUMBERS AS UNIQUE SUMS OF POSITIVE INTEGERS

  • Laohakosol, Vichian;Chalermchai, Jiraporn
    • The Pure and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.63-72
    • /
    • 2004
  • It is known that each natural number can be written uniquely as a sum of Fibonacci numbers with suitably increasing indices. In 1960, Daykin showed that the sequence of Fibonacci numbers is the only sequence with this property. Consider here the problem of representing each natural number uniquely as a sum of positive integers taken from certain sequence allowing a fixed number, $\cal{l}\geq2$, of repetitions. It is shown that the $(\cal{l}+1)$-adic expansion is the only such representation possible.

  • PDF

CHARACTERIZATION OF GLOBALLY-UNIQUELY-SOLVABLE PROPERTY OF A CONE-PRESERVING Z-TRANSFORMATION ON EUCLIDEAN JORDAN ALGEBRAS

  • SONG, YOON J.
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.3_4
    • /
    • pp.309-317
    • /
    • 2016
  • Let V be a Euclidean Jordan algebra with a symmetric cone K. We show that for a Z-transformation L with the additional property L(K) ⊆ K (which we will call ’cone-preserving’), GUS ⇔ strictly copositive on K ⇔ monotone + P. Specializing the result to the Stein transformation SA(X) := X - AXAT on the space of real symmetric matrices with the property $S_A(S^n_+){\subseteq}S^n_+$, we deduce that SA GUS ⇔ I ± A positive definite.

RELATIVE (p, q, t)L-TH TYPE AND RELATIVE (p, q, t)L-TH WEAK TYPE ORIENTED GROWTH PROPERTIES OF WRONSKIAN

  • Biswas, Tanmay;Biswas, Chinmay
    • The Pure and Applied Mathematics
    • /
    • v.29 no.1
    • /
    • pp.69-91
    • /
    • 2022
  • In the paper we establish some new results depending on the comparative growth properties of composite transcendental entire and meromorphic functions using relative (p, q, t)L-th order, relative (p, q, t)L-th type and relative (p, q, t)L-th weak type and that of Wronskian generated by one of the factors.

RELATIVE (p, q, t)L-TH ORDER AND RELATIVE (p, q, t)L-TH TYPE BASED SOME GROWTH ASPECTS OF COMPOSITE ENTIRE AND MEROMORPHIC FUNCTIONS

  • Biswas, Tanmay
    • Honam Mathematical Journal
    • /
    • v.41 no.3
    • /
    • pp.463-487
    • /
    • 2019
  • In the paper we establish some new results depending on the comparative growth properties of composite entire and meromorphic functions using relative (p, q, t)L-th order and relative (p, q, t)L-th type of entire and meromorphic function with respect to another entire function.

Some Paranormed Difference Sequence Spaces Derived by Using Generalized Means

  • MANNA, ATANU;MAJI, AMIT;SRIVASTAVA, PARMESHWARY DAYAL
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.4
    • /
    • pp.909-931
    • /
    • 2015
  • This paper presents some new paranormed sequence spaces $X(r,s,t,p;{\Delta})$ where $X{\in}\{l_{\infty}(p),c(p),c_0(p),l(p)\}$ defined by using generalized means and difference operator. It is shown that these are complete linear metric spaces under suitable paranorms. Furthermore, the ${\alpha}$-, ${\beta}$-, ${\gamma}$-duals of these sequence spaces are computed and also obtained necessary and sufficient conditions for some matrix transformations from $X(r,s,t,p;{\Delta})$ to X. Finally, it is proved that the sequence space $l(r,s,t,p;{\Delta})$ is rotund when $p_n$ > 1 for all n and has the Kadec-Klee property.

On the asymptotic-norming property in lebesgue-bochner function spaces

  • Cho, Sung-Jin;Lee, Byung-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.227-232
    • /
    • 1992
  • In this paper we prove that if (.ohm., .SIGMA., .mu.) is a non-purely atomic measure space and X is strictly convex, then X has the asymptotic-norming property II if and only if $L_{p}$ (X, .mu.), 1 < p < .inf., has the asymptotic-norming property II. And we prove that if $X^{*}$ is an Asplund space and strictly convex, then for any p, 1 < p < .inf., $X^{*}$ has the .omega.$^{*}$-ANP-II if and only if $L_{p}$ ( $X^{*}$, .mu.) has the .omega.$^{*}$-ANP-II.*/-ANP-II.

  • PDF

The metric approximation property and intersection properties of balls

  • Cho, Chong-Man
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.467-475
    • /
    • 1994
  • In 1983 Harmand and Lima [5] proved that if X is a Banach space for which K(X), the space of compact linear operators on X, is an M-ideal in L(X), the space of bounded linear operators on X, then it has the metric compact approximation property. A strong converse of the above result holds if X is a closed subspace of either $\elll_p(1 < p < \infty) or c_0 [2,15]$. In 1979 J. Johnson [7] actually proved that if X is a Banach space with the metric compact approximation property, then the annihilator K(X)^\bot$ of K(X) in $L(X)^*$ is the kernel of a norm-one projection in $L(X)^*$, which is the case if K(X) is an M-ideal in L(X).

  • PDF

SLOWLY CHANGING FUNCTION ORIENTED GROWTH MEASUREMENT OF DIFFERENTIAL POLYNOMIAL AND DIFFERENTIAL MONOMIAL

  • Biswas, Tanmay
    • Korean Journal of Mathematics
    • /
    • v.27 no.1
    • /
    • pp.17-51
    • /
    • 2019
  • In the paper we establish some new results depending on the comparative growth properties of composite entire and meromorphic functions using relative $_pL^*$-order, relative $_pL^*$-lower order and differential monomials, differential polynomials generated by one of the factors.

MAPPING PROPERTIES OF THE MARCINKIEWICZ INTEGRALS ON HOMOGENEOUS GROUPS

  • Choi, Young-Woo;Rim, Kyung-Soo
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.61-75
    • /
    • 2002
  • Under the cancellation property and the Lipschitz condition on kernels, we prove that the Marcinkiewicz integrals defined on a homogeneous group H are bounded from $H^1$(H) to $L^1$(H), from $L_{c}$ $^{\infty}$(H) to BMO (H), and from $L^{p}$ (H) to $L^{p}$ (H) for 1 < p < $\infty$ assuming the $L^{q}$ -boundedness for some q > 1.for some q > 1.