• 제목/요약/키워드: property ($D_k$)

검색결과 1,619건 처리시간 0.036초

SBR/Organoclay Nanocomposites for the Application on Tire Tread Compounds

  • Kim, Wook-Soo;Lee, Dong-Hyun;Kim, Il-Jin;Son, Min-Jin;Kim, Won-Ho;Cho, Seong-Gyu
    • Macromolecular Research
    • /
    • 제17권10호
    • /
    • pp.776-784
    • /
    • 2009
  • N,N-dimethyldodecylamine (tertiary amine)-modified MMT (DDA-MMT) was prepared as an organically modified layered silicate (OLS), after which styrene-butadiene rubber (SBR) nanocomposites reinforced with the OLS were manufactured via the latex method. The layer distance of the OLS and the morphology of the nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). By increasing the amount of N,N-dimethyldodecylamine (DDA) up to 2.5 g, the maximum values of torque, tensile strength and wear resistance of the SBR nanocomposites were increased due to the increased dispersion of the silicate layers in the rubber matrix and the increased crosslinking of the SBR nanocomposites by DDA itself. When SBR nanocomposites were manufactured by using the ternary filler system (carbon black/silica/OLS) to improve their dynamic properties as a tire tread compound, the tan $\delta$(at $0^{\circ}C$ and $60^{\circ}C$) property of the compounds was improved by using metal stearates instead of stearic acid. The mechanical properties and wear resistance were increased by direct substitution of calcium stearate for stearic acid because the filler-rubber interaction was increased by the strong ionic effect between the calcium cation and silicates with anionic surface. However, as the amount of calcium stearate was further increased above 0.5 phr, the mechanical properties and wear resistance were degraded due to the lubrication effect of the excessive amount of calcium stearate. Consequently, the SBR/organoclay nanocomposites that used carbon black, silica, and organoclay as their ternary filler system showed excellent dynamic properties, mechanical properties and wear resistance as a tire tread compound for passenger cars when 0.5 phr of calcium stearate was substituted for the conventionally used stearic acid.

산화물 박막 커패시터의 RTA 처리와 유전 특성에 관한 연구 (The Study on Dielectric and RTA Property of Oxide Thin-films)

  • 김인성;이동윤;조영란;송재성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.23-25
    • /
    • 2001
  • In this work, the $Ta_2O_5$ thin films were deposited on Pt/n-Si substrate by reactive magnetron sputtering and the RTA treatment at temperatures range from 650 to $750^{\circ}C$ in $O_2$ and vacuum. X-ray diffraction analysis, FE SEM, dielectric properties and leakage current density have been used to study the structural and electrical properties of the $Ta_2O_5$ thin films. XRD result showed that as- deposited films were amorphous and the annealed films crystallized (<$700^{\circ}C$) into ${\beta}-Ta_2O_5$. The crystallinity increased with temperature in terms of an increase in the intensity of the diffracted peaks(${\beta}-Ta_2O_5$) and annealing in oxygen reduced defect dang1ing Ta-O bonds. As deposited $Ta_2O_5$ films show the leakage current density $10^{-7}$ to $10^{-8}$ (A/$cm^2)$ at low electric fields (<200 kV/cm) However, it was found leakage current density of $Ta_2O_5$ thin films decreased with $O_2$ ambient annealing. The dielectric constant of the as deposited $Ta_2O_5$ thin films was ${\varepsilon}_r$ $9{\sim}11$ but the dielectric constant was increased after RTA treatment in $O_2$ ambient more then in vacuum.

  • PDF

Effects of Whey Powder Supplementation on Dry-Aged Meat Quality

  • Kim, Ji-Han;Yeon, Su-Jung;Hong, Go-Eun;Park, Woojoon;Lee, Chi-Ho
    • 한국축산식품학회지
    • /
    • 제36권3호
    • /
    • pp.397-404
    • /
    • 2016
  • The objective of this study was to determine the effect of dietary supplementation with whey powder (WP, 1g/kg feed) from weaning to slaughter (150 d) on dry-aged loin quality of pigs. Fifty-eight pigs were randomly divided into two dietary treatment groups (seven replications of four pigs per treatments). Basal diet with 0.1% whey powder was supplied to the WP group. Basal diet was used for the control group (CON). Diet whey protein did not appear to influence the moisture or protein contents. However, ash and fat contents were significantly (p<0.05) decreased in the WP group compared to the control group. Drip loss was significantly (p<0.05) lower in the WP group than that of the control group. Increasing redness with decreasing lightness was found in the inner loin of the WP group. Calcium and iron contents in the WP group were significantly higher than those in the control group. Protein degradation was higher in the WP group than that in the control group (p<0.05), whereas shear force was lower in the WP group than that in the control group (p<0.05). In conclusion, the basal diet supplemented with 0.1% whey powder influence negatively the lipid oxidation of meat whereas the texture property and mineral composition of meat from whey powder fed pigs are developed.

고함량의 Mg을 함유한 Al-Mg 합금의 이축교번단조 변형에 따른 미세조직 및 인장특성 변화 (Microstructure Evolution and Tensile Properties of Al-Mg Alloy Containing a High Content of Mg by Biaxial Alternative Forging)

  • 신영철;하성호;윤영옥;김세광;최호준;현경환;현승균
    • 소성∙가공
    • /
    • 제28권6호
    • /
    • pp.361-367
    • /
    • 2019
  • Microstructure evolution and tensile properties of Al-8mass%Mg alloy casting billet by biaxial alternative forging were investigated in this study. An alternative forging system tailored in this study was used to allow continuous strain accumulations on the alloy workpiece. A finite element (FE) simulation results revealed that the strain was mainly concentrated in the core and that the shear bands developed into a form with an X shape in the cross-section of workpiece after the alternative forging using octangular rod shaped dies. With increasing the forging passes, it was observed that the Al-8mass%Mg alloy workpieces were significantly deformed, and cracks began to form and propagate on the both ends of the forged workpieces after five passes at room temperature. In as-forged microstructures taken by microscopes, twins, clustering of dislocations, and fine subgrains were found. Tensile strengths of the forged specimens showed significant increases depending on the number of forging passes, and a trade-off relationship was observed between the elongation and strength. At room temperature and 100℃ the workpieces showed similar behaviors in microstructural evolution and tensile properties depending on forging passes, while the increase range in strength was reduced at 200℃.

Ti-8Ta-3Nb 합금의 표면처리에 의한 백서 두개관 세포의 반응 (Biological response of primary rat calvarial cell by surface treatment of Ti-8Ta-8Nb alloy)

  • 김해진;손미경;박지일;정현주;김영준
    • Journal of Periodontal and Implant Science
    • /
    • 제38권4호
    • /
    • pp.595-602
    • /
    • 2008
  • Purpose: Ti-6Al-4V alloy is widely used as an implant material because of its good biocompatibility and good mechanical property compared with commercial pure titanium. Otherwise, toxicity of aluminum and vanadium in vivo has been reported. Ti-8Ta-3Nb alloy is recently developed in the R&D Center for Ti and Special Alloys and it was reported that this alloy has high mechanical strength, no cytotoxicity and similar biocompatibility to commercial pure titanium, but many studies are needed for its clinical use. In these experiment, we carried out different surface treatment on each Ti-8Ta-3Nb alloy disks, then cultured cell on it and assessed biological response. Materials and Methods: cpTi, Ti-6Al-4V, Ti-8Ta-3Nb alloy disks were prepared and carried out sandblasting and acid etching (SLA) or alkali-heat treatment (AH) on the Ti-8Ta-3Nb alloy disks. We cultured primary rat calvarial cells on each surface and assessed early cell attachment and proliferation by scanning electron microscopy, cell proliferation, alkaline phosphatase activity. Result: The rates of cell proliferation on the cpTi, Ti-8Ta-3Nb AH disks were higher than others (p<0.05) and alkaline phosphatase activity was significantly enhanced on the Ti-STa-8Nb AH disks(p<0.05). Conclusion: Most favorable cell response was shown on the Ti-8Ta-3Nb AH surfaces. It is supposed that alkali-heat treatment of the Ti-8Ta-3Nb alloy could be induced earlier bone healing and osseointegration than smooth surface.

저궤도 위성의 대기권 재진입 시 생존성 및 피해확률 분석 (Re-entry Survivability and On-Ground Risk Analysis of Low Earth Orbit Satellite)

  • 정순우;민찬오;이미현;이대우;조겸래
    • 한국항공우주학회지
    • /
    • 제42권2호
    • /
    • pp.158-164
    • /
    • 2014
  • IADC의 '25년 규정'에 의해 미션종료 된 저궤도 인공위성은 25년 이내에 지구로 재진입, 소각 폐기되도록 권고하고 있다. 이때 인공위성의 부품일부 또는 다수가 살아남아 지상에 충돌할 경우 인명 및 재산피해를 낼 수 있다. 우리나라의 경우 저궤도 위성으로서 아리랑 인공위성과 과학기술위성을 운용 중에 있으며 임무종료 후에는 모두 대기권 재진입을 통한 폐기처리가 필수이다. 따라서 본 논문에서는 ESA의 DRAMA내부의 SARA(Re-entry Survival and Risk Analysis)모듈을 이용하여 지상피해가 예측되는 크기인 가상위성의 추락궤적 및 생존부품을 분석하고 그에 따른 지상충돌확률, 피해확률을 분석하였다. 분석결과 198.831kg이 생존할 것으로 예상되며 추락지점이 한반도일 경우 전체 피해면적은 $15.2742m^2$, 피해확률은 5.9614E-03(2D)일 것으로 예상된다.

자기장에 따른 자기유변탄성체의 스틱 슬립 현상 연구 (Stick-slip Characteristics of Magnetorheological Elastomer under Magnetic Fields)

  • 연성룡;이광희;김철현;이철희;최종명
    • Tribology and Lubricants
    • /
    • 제31권1호
    • /
    • pp.6-12
    • /
    • 2015
  • This paper investigates the stick-slip characteristic of magnetorheological elastomer (MRE) between an aluminum plate and the surface of the MRE. MRE is a smart material and it can change its mechanical behavior with the interior iron particles under the influence of an applied magnetic field. Stick-slip is a movement of two surfaces relative to each other that proceeds as a series of jerks caused by alternate sticking from friction and sliding when the friction is overcome by an applied force. This special tribology phenomenon can lead to unnecessary wear, vibration, noise, and reduced service life of work piece. The stick-slip phenomenon is avoided as far as possible in the field of mechanical engineering. As this phenomenon is a function of material property, applied load, and velocity, it can be controlled using the characteristics of MRE. MRE as a soft smart material, whose mechanical properties such as modulus and stiffness can be changed via the strength of an external magnetic field, has been widely studied as a prospective replacement for general rubber in the mechanical domain. In this study, friction force is measured under different loads, speed, and magnetic field strength. From the test results, it is confirmed that the stick-slip phenomenon can be minimized under optimum conditions and can be applied in various mechanical components.

알파술폰 고급지방산 폴리에틸렌글리콜 에스테르류의 계면물성 (Surfaces Properties of ${\alpha}-Sulfonated$ Fatty Acid Polyethylene Glycol Esters)

  • 김진현;연영흠;윤영균;남기대
    • 한국응용과학기술학회지
    • /
    • 제15권2호
    • /
    • pp.11-24
    • /
    • 1998
  • All the surface activities including surface tension, foaming power, foam stability, emulsifying power, dispersion effect, and detergency were measured and critical micelle concentration(cmc) was evaluated in dilute aqueous solution. The cmc evaluated by the Ring method was $10^{-3}{\sim}10^{-4}mol/L$ in case of monoesters, and $10^{-3}{\sim}5.0{\times}10^{-5}mol/L$ in case of diesters, respectively. Surface tension of the aqueous solution was decreased to $45{\sim}50dyne/cm$, showing the tendency that the ability of lowering the surface tension was dependent on increasing of carbon atom number in alkyl chain. Foaming power of all the monoesters was better than that of diesters. while foam stability of diesters was to the contrary. Emulsifying power of soybean oil or benzene was specially expected to be good for emulsifiers in industrial application fields. HLB values of monoesters and diesters evaluated by Griffin's method were in the range of 8 to 12. Dispersion property of ferric oxide was stable in the range of $4.5{\times}10^{-5}{\sim}5.0{\times}^{-4}mol/L$ in case of monoesters, and $10^{-5}{\sim}10^{-4}mol/L$ in case of diesters.

1000MPa급 DP강의 Nd:YAG 레이저 용접부의 기계적 성질과 성형성에 미치는 용접 속도의 영향 (Effect of Welding Speed on Mechanical Properties and Formability in Nd:YAG Laser Welds of 1000MPa Grade DP Steel)

  • 장진영;최우남;정병훈;강정윤
    • Journal of Welding and Joining
    • /
    • 제27권2호
    • /
    • pp.69-75
    • /
    • 2009
  • The effects of welding speed were investigated on penetration characteristics, defects and mechanical properties including formability test in Nd:YAG laser welded 1000MPa grade DP steels. A shielding gas was not used and bead-on-plate welding was performed with various welding speeds at 3.5kW laser power. Defects of surface and inner beads were not observed in all welding speeds. As the welding speed increased, the weld cross-section varied from the trapezoid having wider bottom bead, through X type, finally to V type in partial penetration range of welding speeds. The characteristic of hardness distribution was also investigated. The center of HAZ had maximum hardness, followed by a slight decrease of hardness as approaching to FZ. Significant softening occurred at the HAZ near BM. Regardless of the welding speed, the weld showed approximately the same hardness distribution. In the perpendicular tensile test with respect to the weld direction, all specimens were fractured at the softening zone. In the parallel tensile test to the weld direction, the first crack occurred at weld center and then propagated into the weld. Good formability over 80% was taken for all welding conditions.

Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core

  • Eyvazian, Arameh;Hamouda, Abdel Magid;Tarlochan, Faris;Mohsenizadeh, Saeid;Dastjerdi, Ali Ahmadi
    • Steel and Composite Structures
    • /
    • 제33권6호
    • /
    • pp.891-906
    • /
    • 2019
  • This study considers the instability behavior of sandwich plates considering magnetorheological (MR) fluid core and piezoelectric reinforced facesheets. As facesheets at the top and bottom of structure have piezoelectric properties they are subjected to 3D electric field therefore they can be used as actuator and sensor, respectively and in order to control the vibration responses and loss factor of the structure a proportional-derivative (PD) controller is applied. Furthermore, Halpin-Tsai model is used to determine the material properties of facesheets which are reinforced by graphene platelets (GPLs). Moreover, because the core has magnetic property, it is exposed to magnetic field. In addition, Kelvin-Voigt theory is applied to calculate the structural damping of the piezoelectric layers. In order to consider environmental forces applied to structure, the visco-Pasternak model is assumed. In order to consider the mechanical behavior of structure, sinusoidal shear deformation theory (SSDT) is assumed and Hamilton's principle according to piezoelasticity theory is employed to calculate motion equations and these equations are solved based on differential cubature method (DCM) to obtain the vibration and modal loss factor of the structure subsequently. The effect of different factors such as GPLs distribution, dimensions of structure, electro-magnetic field, damping of structure, viscoelastic environment and boundary conditions of the structure on the vibration and loss factor of the system are considered. In order to indicate the accuracy of the obtained results, the results are validated with other published work. It is concluded from results that exposing magnetic field to the MR fluid core has positive effect on the behavior of the system.