SBR/Organoclay Nanocomposites for the Application on Tire Tread Compounds

  • Kim, Wook-Soo (Department of Chemical Engineering, Pusan National University) ;
  • Lee, Dong-Hyun (Department of Chemical Engineering, Pusan National University) ;
  • Kim, Il-Jin (Department of Chemical Engineering, Pusan National University) ;
  • Son, Min-Jin (Department of Chemical Engineering, Pusan National University) ;
  • Kim, Won-Ho (Department of Chemical Engineering, Pusan National University) ;
  • Cho, Seong-Gyu (R&D Center, Dongil Rubber Belt Co., Ltd.)
  • Published : 2009.10.25

Abstract

N,N-dimethyldodecylamine (tertiary amine)-modified MMT (DDA-MMT) was prepared as an organically modified layered silicate (OLS), after which styrene-butadiene rubber (SBR) nanocomposites reinforced with the OLS were manufactured via the latex method. The layer distance of the OLS and the morphology of the nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). By increasing the amount of N,N-dimethyldodecylamine (DDA) up to 2.5 g, the maximum values of torque, tensile strength and wear resistance of the SBR nanocomposites were increased due to the increased dispersion of the silicate layers in the rubber matrix and the increased crosslinking of the SBR nanocomposites by DDA itself. When SBR nanocomposites were manufactured by using the ternary filler system (carbon black/silica/OLS) to improve their dynamic properties as a tire tread compound, the tan $\delta$(at $0^{\circ}C$ and $60^{\circ}C$) property of the compounds was improved by using metal stearates instead of stearic acid. The mechanical properties and wear resistance were increased by direct substitution of calcium stearate for stearic acid because the filler-rubber interaction was increased by the strong ionic effect between the calcium cation and silicates with anionic surface. However, as the amount of calcium stearate was further increased above 0.5 phr, the mechanical properties and wear resistance were degraded due to the lubrication effect of the excessive amount of calcium stearate. Consequently, the SBR/organoclay nanocomposites that used carbon black, silica, and organoclay as their ternary filler system showed excellent dynamic properties, mechanical properties and wear resistance as a tire tread compound for passenger cars when 0.5 phr of calcium stearate was substituted for the conventionally used stearic acid.

Keywords

References

  1. A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1174 (1993) https://doi.org/10.1557/JMR.1993.1174
  2. A. Okada, Y. Kojima, M. Kawasumi, Y. Fukushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1179 (1993) https://doi.org/10.1557/JMR.1993.1179
  3. Y. T. Vu, J. E. Mark, L. H. Pham, and M. Enhelhardt, J. Appl. Polym. Sci., 82, 1391 (2001) https://doi.org/10.1002/app.1976
  4. S. S. Ray and A. K. Bhowmick, Rubber Chem. Technol., 74, 835 (2001) https://doi.org/10.5254/1.3547656
  5. S. Joly, G. Garnaud, R. Ollitrault, L. Bokobza, and J. E. Mark, Chem. Mater., 14, 4202 (2002) https://doi.org/10.1021/cm020093e
  6. S. Sadhu and A. K. Bhowmick, J. Appl. Polym. Sci., 92, 698 (2004) https://doi.org/10.1002/app.13673
  7. S. Sadhu and A. K. Bhowmick, J. Polym. Sci. Part B: Polym. Phys., 42, 1573 (2004) https://doi.org/10.1002/polb.20036
  8. M. Arroyo, M. A. Lopez-Manchado, and B. Herrero, Polymer, 44, 2447 (2003) https://doi.org/10.1016/S0032-3861(03)00090-9
  9. S. Varghese and J. Karger-Kocsis, J. Appl. Polym. Sci., 91, 813 (2004) https://doi.org/10.1002/app.13173
  10. P. L. Teh, Z. A. Mohd Ishak, A. S. Hashim, J. Karger-Kocsis, and U. S. Ishiaku, J. Appl. Polym. Sci., 94, 2438 (2004) https://doi.org/10.1002/app.21188
  11. M. Ganter, W. Gronski, P. Reichert, and R. Mulhaupt, Rubber Chem. Technol., 74, 221 (2002)
  12. S. H. Wang, Z. L. Peng, Y. Zhang, and Y. X. Zhang, Symposium of International Rubber Conference 2004, Beijing, China, Sep. 21-25, Volume B, p 257
  13. C. Nah, H. J. Ryu, W. D. Kim, and Y. W. Chang, Polym. Int’l., 52, 1359 (2003) https://doi.org/10.1002/pi.1227
  14. W. H. Kim, S. K. Kim, J. H. Kang, Y. Cheo, and Y. W. Chang, Macromol. Res., 14, 187 (2006) https://doi.org/10.1007/BF03218507
  15. N. Hasegawa, H. Okamoto, and A. Usuki, J. Appl. Polym. Sci., 93, 758 (2004) https://doi.org/10.1002/app.20546
  16. H. Zheng, Y. Zhang, Z. Peng, and Y. Zhang, J. Appl. Polym. Sci., 92, 638 (2004) https://doi.org/10.1002/app.13560
  17. J. Ma, P. Xiang, Y. W. Mai, and L. Q. Zhang, Macromol Rapid Commun., 25, 1692 (2004) https://doi.org/10.1002/marc.200400286
  18. Y. Q. Wang, H. F. Zhang, Y. P. Wu, J. Wang, and L. Q. Zhang, Symposium of International Rubber Conference 2004, Beijing, China, Sep. 21-25, Volume B, p 420
  19. H. F. Zhang, Y. Q. Wang, Y. P. Wu, L. Q. Zhang, J. Yang, and X. F. Wang, Symposium of International Rubber Conference 2004, Beijing, China, Sep. 21-25, Volume B, p 240
  20. Y. P. Wu, Q. X. Jia, D. S Yu, and L. Q. Zhang, J. Appl. Polym. Sci., 89, 3855 (2003) https://doi.org/10.1002/app.12568
  21. L. Q. Zhang, Y. Z. Wang, Y. Q. Wang, Y. A. Sui, and D. S. Yu, J. Appl. Polym. Sci., 78, 1873 (2000) https://doi.org/10.1002/1097-4628(20001209)78:11<1873::AID-APP40>3.0.CO;2-8
  22. Y. Z. Wang, L. Q. Zhang, C. H. Tang, and D. S. Yu, J. Appl. Polym. Sci., 78, 1879 (2000) https://doi.org/10.1002/1097-4628(20001209)78:11<1879::AID-APP50>3.0.CO;2-1
  23. Y. Wang, H. Zhang, Y. Wu, J. Yang, and L. Zhang, Eur. Polym. J., 41, 2776 (2005) https://doi.org/10.1016/j.eurpolymj.2005.05.019
  24. M. J. Wang and W. L. Patterson, Paper presented at ACS Meeting, Anaheim, California, May 6 (1997)
  25. W. Kim, B. S. Kang, S. G. Cho, C. S. Ha, and J. W. Bae, Compos. Interface, 14, 409 (2007) https://doi.org/10.1163/156855407781291218
  26. Y. P. Wu, Y. Q. Wang, H. F. Zhang, Y. Z. Wang, D. S Yu, L. Q. Zhang, and J. Yang, Compos. Sci. Technol., 65, 1195 (2005) https://doi.org/10.1016/j.compscitech.2004.11.016
  27. N. Kobayashi, I. Furuta, H. Akrema, and Y. Isono, Papers American Chemical Society, Division of Rubber Chemistry, 154, 697 (1999)
  28. Michael E. Martini, ACS 122^{nd}, paper No. 45 (1982)
  29. S. Wolff, Rubber Chem. Technol., 55, 967 (1982) https://doi.org/10.5254/1.3535926
  30. W. J. Son, W. Kim, and U. R. Cho, Elastomer, 37, 86 (2002)
  31. C. Nah, Ph.D. Dissertation, The University of Akron (1995)
  32. C. T. R. Pulford, Ph.D. Dissertation, The University of Akron (1979)
  33. Theng, BKG, The Chemistry of Clays Organic Interactions, Wiley, New York, 1974
  34. M. J. Wang, E. H. Tan, and S. Wolff, Rubber Chem. Technol., 66, 178 (1993) https://doi.org/10.5254/1.3538305
  35. S. Bandyopadhyay, P. P De, D. K. Tripathy, and S. K. De, J. Appl. Polym. Sci., 63, 1833 (1997) https://doi.org/10.1002/(SICI)1097-4628(19970328)63:13<1833::AID-APP16>3.0.CO;2-Z
  36. T. Lan, P. D. Kaviratna, and T. J. Pinnavaia, Chem. Mater., 6, 573 (1994) https://doi.org/10.1021/cm00041a002
  37. A. Mousa and J. Karger-Kenny, J. Macromol. Mater. Eng., 286, 260 (2001) https://doi.org/10.1002/1439-2054(20010401)286:4<260::AID-MAME260>3.0.CO;2-X
  38. M. A. Lopez-Manchado, M. Arroyo, B. Herrero, and J. Biagiotti, J. Polym. Sci., 89, 6 (2003)
  39. A. R. Payne and R. E. Whitaker, J. Appl. Polym. Sci., 16, 1191 (1972) https://doi.org/10.1002/app.1972.070160513
  40. A. N. Gent and C. T. R. Pulford, J. Appl. Polym. Sci., 28, 943 (1983) https://doi.org/10.1002/app.1983.070280304
  41. Hallamach, Proc. Phys. Soc., B67, 883 (1954)
  42. V. A. Garten, K. Eppinger, and D. E. Weiss, Rubber Chem. Technol., 29, 1434 (1956) https://doi.org/10.5254/1.3542645
  43. M. J. Wang, Rubber Chem. Technol., 72, 470 (1999)
  44. J. B. Donnet, Rubber Chem. Technol., 71, 323 (1998) https://doi.org/10.5254/1.3538488
  45. M. J. Wang, Rubber Chem. Technol., 71, 520 (1998) https://doi.org/10.5254/1.3538492
  46. M. J. Son, Master’s Thesis, Pusan National University (2007)
  47. S. S. Park, B. H. Park, K. C. Song, and S. K. Kim, Polymer (Korea), 24, 220 (2000)
  48. H. Barron, Reprinted from the India-Rubber Journal, 90, 638 (1935)