• Title/Summary/Keyword: properties prediction

Search Result 1,804, Processing Time 0.026 seconds

Experimental Study on Coefficient of Air Convection (외기대류계수에 관한 실험적 연구)

  • Jeon, Sang-Eun;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.305-313
    • /
    • 2003
  • The setting and hardening of concrete is accompanied with nonlinear temperature distribution caused by development of hydration heat of cement. Especially at early ages, this nonlinear distribution has a large influence on the crack evolution. As a result, in order to predict the exact temperature history in concrete structures it is required to examine thermal properties of concrete. In this study, the coefficient of air convection, which presents thermal transfer between surface of concrete and air, was experimentally investigated with variables such as velocity of wind and types of form. From experimental results, the coefficient of air convection was calculated using equations of thermal equilibrium. Finally, the prediction model for equivalent coefficient of air convection including effects of velocity of wind and types of form was theoretically proposed. The coefficient of air convection in the proposed model increases with velocity of wind, and its dependance on wind velocity is varied with types of form. This tendency is due to a combined heat transfer system of conduction through form and convection to air. From comparison with experimental results, the coefficient of air convection by this model was well agreed with those by experimental results.

Heat Transfer Analysis and Experiments of Reinforced Concrete Slabs Using Galerkin Finite Element Method (Galerkin 유한요소법을 이용한 철근콘크리트 슬래브의 열전달해석 및 실험)

  • Han, Byung-Chan;Kim, Yun-Yong;Kwon, Young-Jin;Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.567-575
    • /
    • 2012
  • A research was conducted to develop a 2-D nonlinear Galerkin finite element analysis of reinforced concrete structures subjected to high temperature with experiments. Algorithms for calculating the closed-form element stiffness for a triangular element with a fully populated material conductance are developed. The validity of the numerical model used in the program is established by comparing the prediction from the computer program with results from full-scale fire resistance tests. Details of fire resistance experiments carried out on reinforced concrete slabs, together with results, are presented. The results obtained from experimental test indicated in that the proposed numerical model and the implemented codes are accurate and reliable. The changes in thermal parameters are discussed from the point of view of changes of structure and chemical composition due to the high temperature exposure. The proposed numerical model takes into account time-varying thermal loads, convection and radiation affected heat fluctuation, and temperature-dependent material properties. Although, this study considered standard fire scenario for reinforced concrete slabs, other time versus temperature relationship can be easily incorporated.

Analytical Study on Hybrid Precast Concrete Beam-Column Connections (하이브리드 프리캐스트 보-기둥 접합부의 해석적 연구)

  • Choi, Chang-Sik;Kim, Seung-Hyun;Choi, Yun-Cheul;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.631-639
    • /
    • 2013
  • Non-linear finite element analysis for newly developed precast concrete details for beam-to-column connection which can be used in moderate seismic region was carried out in this study. Developed precast system is based on composite structure and which have steel tube in column and steel plate in beam. Improving cracking strength of joint under reversed cyclic loading, joint area was casted with ECC (Engineering Cementitious Composites). Since this newly developed precast system have complex sectional properties and newly developed material, new analysis method should be developed. Using embedded elements and models of non-linear finite element analysis program ABAQUS previously tested specimens were successfully analyzed. Analysis results show comparatively accurate and conservative prediction. Using finite element model, effect of axial load magnitude and flexural strength ratio were investigated. Developed connection have optimized performance under axial load of 10~20% of compressive strength of column. Plastic hinge was successfully developed with flexural strength ratio greater than 1.2.

Correlations Between the Physical Properties and Compression Index of KwangYang Clay (광양점토의 물리적 특성과 압축지수의 상관성)

  • Bae, Wooseok;Kim, Jongwoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.7-14
    • /
    • 2009
  • The correlation equation empirically proposed to obtain compression indexes has been proposed to conveniently obtain the value using the soil parameter that can be obtained through simple tests when the number of time of consolidation testing is low or the distribution is large but most of the analyzed regions are limited to certain regions abroad or in the country and multiple data were integrated for use in many cases, thus it is not very reasonable to apply it. Therefore, to establish a new design method considering the uncertainty of the ground, it was selected the Kwangyang port area of which the data have been collected recently thus are relatively more reliable as the subject region of the study in order to maximally reduce the uncertainty of test data. After performing the verification of the normality of the consolidation test data obtained from the selected region and the transformation of variables, a prediction formula was proposed through the regression model with the transformed variables and the proposed regression model with transformed variables was compared with existing empirical equations to verify the suitability of the proposed model formula. After analyzing, it was confirmed that the coefficient of determination was increased after the Box-Cox variable transformation, thus the explanatory power was being enhanced and through the root-mean-square-error method, it was confirmed that the proposed model formula showed the most closed value to the test value.

  • PDF

Practical Design of the Sandmat Considering Consolidation Settlement Properties (연약지반의 침하특성을 고려한 샌드매트의 실용적 설계를 위한 고찰)

  • Lee, Bongjik;Kwon, Youngcheul;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.31-38
    • /
    • 2007
  • The practical design method on sandmat uses a drain length, rate of consolidation settlement and permeability of sand as a major design factors. And, on the basis of this design process, it has been installed beneath the embankment with same thickness. However, the possibility the underestimation on the thickness of sandmat and the delayed drain have been pointed out by several authors caused by a differential settlement at the center and the end of embankment. In this study, therefore, the effect of the differential settlement on the thickness of sandmat and delayed drain through the numerical analysis of embankment was analyzed. As a result, a substantial sandmat thickness becomes small and the possibility of the delayed drain can be certified because of the development of differential settlement at the center and ends of embankment. As a countermeasure to overcome this problem, the applicability of the mound type sandmat was also investigated by the numerical method. It can be concluded that it maintains the designated substantial sandmat thickness throughout consolidation process, and is useful method to maintain the drain capacity. Especially, the mound type sandmat is effective method for a construction site where can cause a differential settlement such as embankment. Furthermore, it has to be designed on the basis of the accurate prediction of consolidation settlement as well as rate of consolidation settlement, drain length and permeability of sand.

  • PDF

Numerical Study on the Variation of Slope Stability for the Embankment Formed by Unsaturated Dredging Soils during Rainfall (강우시 불포화 준설토로 형성된 제방의 사면안정성 변화에 대한 수치해석적 연구)

  • You, Seung-Kyong;Song, Young-Suk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.71-79
    • /
    • 2011
  • In this study, the variation of wetting front and ground water level at the embankment constructed in the Saemangeum area were predicted considering rainfall duration times and the slope stability analysis of the embankment was carried out according to prediction results of wetting front and ground water level. The embankment was formed by dredging soils. A suction stress, a cohesion and a frictional angle of dreding soils measured by soil tests were applied to estimate the unsaturated soil properties. According to the analysis results of the wetting front and the ground water level for various rainfall duration time, the wetting front began to descend from the upper part of embankment at the beginning time of rainfall and after 1 hour of rainfall duration time. After that, the ground water level continued to ascend as the rainfall duration time was getting longer. After rainfall, the ground water level was distributed at a certain depth, and the ground water level was gradually descending as time goes by. According to the slope stability analysis of the embankment considering the variation of the wetting front and the ground water level, the safety factor of slope was rapidly reduced as the rainfall began to infiltrate into the ground, and the minimum safety factor of slope was estimated after 24 hours of rainfall duration time. Meanwhile, the safety factor of slope was increased with regaining the matric suction in the ground after rainfall.

Non-stationary Rainfall Frequency Analysis Based on Residual Analysis (잔차시계열 분석을 통한 비정상성 강우빈도해석)

  • Jang, Sun-Woo;Seo, Lynn;Kim, Tae-Woong;Ahn, Jae-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.449-457
    • /
    • 2011
  • Recently, increasing heavy rainfalls due to climate change and/or variability result in hydro-climatic disasters being accelerated. To cope with the extreme rainfall events in the future, hydrologic frequency analysis is usually used to estimate design rainfalls in a design target year. The rainfall data series applied to the hydrologic frequency analysis is assumed to be stationary. However, recent observations indicate that the data series might not preserve the statistical properties of rainfall in the future. This study incorporated the residual analysis and the hydrologic frequency analysis to estimate design rainfalls in a design target year considering the non-stationarity of rainfall. The residual time series were generated using a linear regression line constructed from the observations. After finding the proper probability density function for the residuals, considering the increasing or decreasing trend, rainfalls quantiles were estimated corresponding to specific design return periods in a design target year. The results from applying the method to 14 gauging stations indicate that the proposed method provides appropriate design rainfalls and reduces the prediction errors compared with the conventional rainfall frequency analysis which assumes that the rainfall data are stationary.

Evaluation of Insulin Like Growth Facror-1 Genetic Polymorphism with Gastric Cancer Susceptibility and Clinicopathological Features

  • Farahani, Roya Kishani;Azimzadeh, Pedram;Rostami, Elham;Malekpour, Habib;Aghdae, Hamid Asadzadeh;Pourhoseingholi, Mohamad Amin;Mojarad, Ehsan Nazemalhosseini;Zali, Mohammad Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4215-4218
    • /
    • 2015
  • Gastric cancer (GC) is one of the most common malignancies in the world. It is the first cause of cancer deaths in both sexes In Iranian population. Circulating insulin-like growth factor-one (IGF-1) levels have been associated for gastric cancer. IGF-1 protein has central roles involved in the regulation of epithelial cell growth, proliferation, transformation, apoptosis and metastasis. Single nucleotide polymorphism in IGF-1 regulatory elements may lead to alter in IGF-1expression level and GC susceptibility. The aim of this study was to investigate the influence of IGF-1 gene polymorphism (rs5742612) on risk of GC and clinicopathological features for the first time in Iranian population. In total, 241 subjects including 100 patients with GC and 141 healthy controls were recruited in our study. Genotypes were analyzed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay with DNA from peripheral blood. The polymorphism was statistically analyzed to investigate the relationship with the risk of GC and clinicopathological properties. Logistic regression analysis revealed that there was no significant association between rs5742612 and the risk of GC. In addition, no significant association between genotypes and clinicopathological features was observed (p value>0.05). The frequencies of the CC, CT, and TT genotypes were 97%, 3%, and 0%, respectively, among the cases, and 97.9%, 2.1%, and 0%, respectively, among the controls. CC genotype was more frequent in cases and controls. The frequencies of C and T alleles were 98.9% and 1.1% in controls and 98.5% and 1.5% in patient respectively. Our results provide the first evidence that this variant is rare in Iranian population and it may not be a powerful genetic predisposing biomarker for prediction GC clinicopathological features in an Iranian population.

Risk Analysis of Factors for Metabolic Diseases according to the Epicaridal Adipose Tissue Thickness - which Focused on the Presented Subjects with Asymptomatic Screening Purposes (심장외막의 지방두께에 따른 대사질환의 위험도 분석 - 무증상의 검진목적으로 내원한 대상자를 위주로)

  • Kim, Sun-Hwa;Kim, Jung-Hoon;Kim, Changsoo
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.476-483
    • /
    • 2016
  • Epicardial adipose tissue(EAT) is metabolically active endocrine organ that secretes several hormones in fat thickness is a risk factor for cardiovascular disease and metabolic disorders. This study was to measure and then using ultrasound epicardial adipose tissue thickness, abdominal subcutaneous fat thickness in the target group correlates and general blood properties and characteristics, and presents a local thickness for prediction of metabolic disorders. Results epicardal adipose tissue of the average thickness measured in each of the subjects was 8.890mm, 4.783mm, 4.777, 6.147mm in each section. Showed the epicardial adipose tissue in correlation with the average thickness of the risk factors age, BMI, SBP, LDH, LDL, TC is a positive correlation relationship(p<0.05) in each section. In particular, the thickness of the metabolic disorders epicardial adipose tissue thickness, abdominal subcutaneous compared to subjects that do not have the risk subjects with a risk factor for fat significantly higher(p<0.05). It showed the most reliable that can be cut-off value of 8.950mm obtained with 66.7 % sensitivity and 80 % specificity for predicting the risk of metabolic disorders.

Prediction of Optimal Leaching Conditions for Green Tea (녹차의 음용을 위한 최적 침출조건 예측)

  • Jang, Moon-Jo;Ha, Hyun-Jung;Yoon, Sung-Ran;Noh, Jung-Eun;Kwon, Joong-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.6
    • /
    • pp.747-753
    • /
    • 2006
  • Tea was known to have different taste and flavor with leaching temperature and time. This study was designed to optimize leaching condition for green tea bag that has been popular to consumers. Soluble solid, total phenolics, and total flavonoid content increased as leaching temperature and time increased. The ranges of maximum leaching condition for these components were $96.1{\sim}99.0^{\circ}C\;and\;5.7{\sim}6.8\;min$. As leaching temperature decreased and leaching time increased, however, electron donating ability (EDA) increased and showed the highest values at $65.3^{\circ}C$ and 7.2 min. The overall acceptability was maximal at $70.2^{\circ}C$ and 3.1min. Based upon the physicochemical and organoleptic properties, it was predicted that the optimal range of leaching conditions for green tea bag was $73{\sim}83^{\circ}C\;for\;5.3{\sim}6.3\;min$.