• Title/Summary/Keyword: properties prediction

Search Result 1,804, Processing Time 0.028 seconds

Reassessment of viscoelastic response in steel-concrete composite beams

  • Miranda, Marcela P.;Tamayo, Jorge L.P.;Morsch, Inacio B.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.617-631
    • /
    • 2022
  • In this paper the viscoelastic responses of four experimental steel-concrete composite beams subjected to highly variable environmental conditions are investigated by means of a finite element (FE) model. Concrete specimens submitted to stepped stress changes are also evaluated to validate the current formulations. Here, two well-known approaches commonly used to solve the viscoelastic constitutive relationship for concrete are employed. The first approach directly solves the integral-type form of the constitutive equation at the macroscopic level, in which aging is included by updating material properties. The second approach is postulated from a rate-type law based on an age-independent Generalized Kelvin rheological model together with Solidification Theory, using a micromechanical based approach. Thus, conceptually both approaches include concrete hardening in two different manners. The aim of this work is to compare and analyze the numerical prediction in terms of long-term deflections of the studied specimens according to both approaches. To accomplish this goal, the performance of several well-known model codes for concrete creep and shrinkage such as ACI 209, CEB-MC90, CEB-MC99, B3, GL 2000 and FIB-2010 are evaluated by means of statistical bias indicators. It is shown that both approaches with minor differences acceptably match the long-term experimental deflection and are able to capture complex oscillatory responses due to variable temperature and relative humidity. Nevertheless, the use of an age-independent scheme as proposed by Solidification Theory may be computationally more advantageous.

Optimization of VIGA Process Parameters for Power Characteristics of Fe-Si-Al-P Soft Magnetic Alloy using Machine Learning

  • Sung-Min, Kim;Eun-Ji, Cha;Do-Hun, Kwon;Sung-Uk, Hong;Yeon-Joo, Lee;Seok-Jae, Lee;Kee-Ahn, Lee;Hwi-Jun, Kim
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.459-467
    • /
    • 2022
  • Soft magnetic powder materials are used throughout industries such as motors and power converters. When manufacturing Fe-based soft magnetic composites, the size and shape of the soft magnetic powder and the microstructure in the powder are closely related to the magnetic properties. In this study, Fe-Si-Al-P alloy powders were manufactured using various manufacturing process parameter sets, and the process parameters of the vacuum induction melt gas atomization process were set as melt temperature, atomization gas pressure, and gas flow rate. Process variable data that records are converted into 6 types of data for each powder recovery section. Process variable data that recorded minute changes were converted into 6 types of data and used as input variables. As output variables, a total of 6 types were designated by measuring the particle size, flowability, apparent density, and sphericity of the manufactured powders according to the process variable conditions. The sensitivity of the input and output variables was analyzed through the Pearson correlation coefficient, and a total of 6 powder characteristics were analyzed by artificial neural network model. The prediction results were compared with the results through linear regression analysis and response surface methodology, respectively.

Machine Learning-based landslide susceptibility mapping - Inje area, South Korea

  • Chanul Choi;Le Xuan Hien;Seongcheon Kwon;Giha Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.248-248
    • /
    • 2023
  • In recent years, the number of landslides in Korea has been increasing due to extreme weather events such as localized heavy rainfall and typhoons. Landslides often occur with debris flows, land subsidence, and earthquakes. They cause significant damage to life and property. 64% of Korea's land area is made up of mountains, the government wanted to predict landslides to reduce damage. In response, the Korea Forest Service has established a 'Landslide Information System' to predict the likelihood of landslides. This system selects a total of 13 landslide factors based on past landslide events. Using the LR technique (Logistic Regression) to predict the possibility of a landslide occurrence and the accuracy is known to be 0.75. However, most of the data used for learning in the current system is on landslides that occurred from 2005 to 2011, and it does not reflect recent typhoons or heavy rain. Therefore, in this study, we will apply a total of six machine learning techniques (KNN, LR, SVM, XGB, RF, GNB) to predict the occurrence of landslides based on the data of Inje, Gangwon-do, which was recently produced by the National Institute of Forest. To predict the occurrence of landslides, it is necessary to process converting landslide events and factors data into a suitable form for machine learning techniques through ArcGIS and Python. In addition, there is a large difference in the number of data between areas where landslides occurred or not. Therefore, the prediction was performed after correcting the unbalanced data using Tomek Links and Near Miss techniques. Moreover, to control unbalanced data, a model that reflects soil properties will use to remove absolute safe areas.

  • PDF

Deep learning method for compressive strength prediction for lightweight concrete

  • Yaser A. Nanehkaran;Mohammad Azarafza;Tolga Pusatli;Masoud Hajialilue Bonab;Arash Esmatkhah Irani;Mehdi Kouhdarag;Junde Chen;Reza Derakhshani
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.327-337
    • /
    • 2023
  • Concrete is the most widely used building material, with various types including high- and ultra-high-strength, reinforced, normal, and lightweight concretes. However, accurately predicting concrete properties is challenging due to the geotechnical design code's requirement for specific characteristics. To overcome this issue, researchers have turned to new technologies like machine learning to develop proper methodologies for concrete specification. In this study, we propose a highly accurate deep learning-based predictive model to investigate the compressive strength (UCS) of lightweight concrete with natural aggregates (pumice). Our model was implemented on a database containing 249 experimental records and revealed that water, cement, water-cement ratio, fine-coarse aggregate, aggregate substitution rate, fine aggregate replacement, and superplasticizer are the most influential covariates on UCS. To validate our model, we trained and tested it on random subsets of the database, and its performance was evaluated using a confusion matrix and receiver operating characteristic (ROC) overall accuracy. The proposed model was compared with widely known machine learning methods such as MLP, SVM, and DT classifiers to assess its capability. In addition, the model was tested on 25 laboratory UCS tests to evaluate its predictability. Our findings showed that the proposed model achieved the highest accuracy (accuracy=0.97, precision=0.97) and the lowest error rate with a high learning rate (R2=0.914), as confirmed by ROC (AUC=0.971), which is higher than other classifiers. Therefore, the proposed method demonstrates a high level of performance and capability for UCS predictions.

Prediction of the Dynamic behavior and Contact Pressure of Overhung Rotor Systems According to the Support Characteristics of Double-row Tapered Roller Bearings (복열테이퍼 롤러베어링 지지특성에 따른 오버헝 회전축 시스템의 동적 거동 예측 및 접촉부 압력 해석)

  • Taewoo Kim;Junho Suh;Min-Soo Kim;Yonghun Yu
    • Tribology and Lubricants
    • /
    • v.39 no.4
    • /
    • pp.154-166
    • /
    • 2023
  • This study establishes a numerical analysis model of the finite element overhung rotor supported by a DTRB and describes the stiffness properties of the DTRB. The vibration characteristics and contact pressure of the RBR system are predicted according to the DTRB support characteristics such as the initial axial compression and roller profile. The stiffness of the DTRB significantly varies depending on the initial axial compression and external load owing to the occurrence of rollers under the no-load condition and increase in the Hertz contact force. The increase in the initial axial compression increases the rigidity of the DTRB, thereby reducing the displacement of the RBR system and simultaneously increasing the natural frequency. However, above a certain initial axial compression, the effect becomes insignificant, and an excessive increase in the initial axial compression increases the contact pressure. The roller crowning radius, which gives a curvature in the longitudinal direction of the roller, decreases the displacement of the RBR system and increases the natural frequency as the value increases. However, an increase in the crowning radius increases the edge stress, causing a negative effect in terms of the contact pressure. These results show that the DTRB support characteristics required for reducing the vibration and contact pressure of the RBR system supported by the DTRB can be designed.

Prediction of Drug-Drug Interaction Based on Deep Learning Using Drug Information Document Embedding (약물 정보 문서 임베딩을 이용한 딥러닝 기반 약물 간 상호작용 예측)

  • Jung, Sun-woo;Yoo, Sun-yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.276-278
    • /
    • 2022
  • All drugs have a specific action in the body, and in many cases, drugs are combinated due to complications or new symptoms during existing drug treatment. In this case, unexpected interactions may occur within the body. Therefore, predicting drug-drug interactions is a very important task for safe drug use. In this study, we propose a deep learning-based predictive model that learns using drug information documents to predict drug interactions that may occur when using multiple drugs. The drug information document was created by combining several properties such as the drug's mechanism of action, toxicity, and target using DrugBank data. And drug information document is pair with another drug documents and used as an input to a deep learning-based predictive model, and the model outputs the interaction between the two drugs. This study can be used to predict future interactions between new drug pairs by analyzing the differences in experimental results according to changes in various conditions.

  • PDF

Shear Load-Transfer Function of Rock-Socketed Drilled Shafts Considering Borehole Roughness (굴착면 거칠기를 고려한 암반 근입 현장타설말뚝의 주면 하중전이함수 제안)

  • Seol, Hoon-Il;Woo, Sang-Yoon;Han, Keun-Taek;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.23-35
    • /
    • 2006
  • Shear load transfer characteristics of rock-socketed drilled shafts were analyzed. The constant normal stiffness (CNS) direct shear tests were performed to identify the major influencing factors of shaft resistance, i.e., unconfined compressive strength, borehole roughness, normal stiffness, initial confining stress, and material properties. Based on the CNS tests, shear load transfer function of drilled shafts in rocks is proposed using borehole roughness and the geological strength index (GSI), which indicates discontinuity and surface condition of rock mass in Hoek-Brown criterion (1997). The proposed load-transfer function was verified by the load test results of seven rock-socketed drilled test shafts subjected to axial loads. Through comparisons of the results of load tests, it is found that the load-transfer function by the present study is in good agreement with the general trend observed by in situ measurements, and thus represents a significant improvement in the prediction of load transfer of drilled shafts.

Improvement of Electroforming Process System Based on Double Hidden Layer Network (이중 비밀 다층구조 네트워크에 기반한 전기주조 공정 시스템의 개선)

  • Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.3
    • /
    • pp.61-67
    • /
    • 2023
  • In order to optimize the pulse electroforming copper process, a double hidden layer BP (Back Propagation) neural network is constructed. Through sample training, the mapping relationship between electroforming copper process conditions and target properties is accurately established, and the prediction of microhardness and tensile strength of the electroforming layer in the pulse electroforming copper process is realized. The predicted results are verified by electrodeposition copper test in copper pyrophosphate solution system with pulse power supply. The results show that the microhardness and tensile strength of copper layer predicted by "3-4-3-2" structure double hidden layer neural network are very close to the experimental values, and the relative error is less than 2.32%. In the parameter range, the microhardness of copper layer is between 100.3~205.6MPa and the tensile strength is between 112~485MPa.When the microhardness and tensile strength are optimal,the corresponding process conditions are as follows: current density is 2A-dm-2, pulse frequency is 2KHz and pulse duty cycle is 10%.

An EEG-fNIRS Hybridization Technique in the Multi-class Classification of Alzheimer's Disease Facilitated by Machine Learning (기계학습 기반 알츠하이머성 치매의 다중 분류에서 EEG-fNIRS 혼성화 기법)

  • Ho, Thi Kieu Khanh;Kim, Inki;Jeon, Younghoon;Song, Jong-In;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.305-307
    • /
    • 2021
  • Alzheimer's Disease (AD) is a cognitive disorder characterized by memory impairment that can be assessed at early stages based on administering clinical tests. However, the AD pathophysiological mechanism is still poorly understood due to the difficulty of distinguishing different levels of AD severity, even using a variety of brain modalities. Therefore, in this study, we present a hybrid EEG-fNIRS modalities to compensate for each other's weaknesses with the help of Machine Learning (ML) techniques for classifying four subject groups, including healthy controls (HC) and three distinguishable groups of AD levels. A concurrent EEF-fNIRS setup was used to record the data from 41 subjects during Oddball and 1-back tasks. We employed both a traditional neural network (NN) and a CNN-LSTM hybrid model for fNIRS and EEG, respectively. The final prediction was then obtained by using majority voting of those models. Classification results indicated that the hybrid EEG-fNIRS feature set achieved a higher accuracy (71.4%) by combining their complementary properties, compared to using EEG (67.9%) or fNIRS alone (68.9%). These findings demonstrate the potential of an EEG-fNIRS hybridization technique coupled with ML-based approaches for further AD studies.

  • PDF

Practical applicable model for estimating the carbonation depth in fly-ash based concrete structures by utilizing adaptive neuro-fuzzy inference system

  • Aman Kumar;Harish Chandra Arora;Nishant Raj Kapoor;Denise-Penelope N. Kontoni;Krishna Kumar;Hashem Jahangir;Bharat Bhushan
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.119-138
    • /
    • 2023
  • Concrete carbonation is a prevalent phenomenon that leads to steel reinforcement corrosion in reinforced concrete (RC) structures, thereby decreasing their service life as well as durability. The process of carbonation results in a lower pH level of concrete, resulting in an acidic environment with a pH value below 12. This acidic environment initiates and accelerates the corrosion of steel reinforcement in concrete, rendering it more susceptible to damage and ultimately weakening the overall structural integrity of the RC system. Lower pH values might cause damage to the protective coating of steel, also known as the passive film, thus speeding up the process of corrosion. It is essential to estimate the carbonation factor to reduce the deterioration in concrete structures. A lot of work has gone into developing a carbonation model that is precise and efficient that takes both internal and external factors into account. This study presents an ML-based adaptive-neuro fuzzy inference system (ANFIS) approach to predict the carbonation depth of fly ash (FA)-based concrete structures. Cement content, FA, water-cement ratio, relative humidity, duration, and CO2 level have been used as input parameters to develop the ANFIS model. Six performance indices have been used for finding the accuracy of the developed model and two analytical models. The outcome of the ANFIS model has also been compared with the other models used in this study. The prediction results show that the ANFIS model outperforms analytical models with R-value, MAE, RMSE, and Nash-Sutcliffe efficiency index values of 0.9951, 0.7255 mm, 1.2346 mm, and 0.9957, respectively. Surface plots and sensitivity analysis have also been performed to identify the repercussion of individual features on the carbonation depth of FA-based concrete structures. The developed ANFIS-based model is simple, easy to use, and cost-effective with good accuracy as compared to existing models.