DOI QR코드

DOI QR Code

Shear Load-Transfer Function of Rock-Socketed Drilled Shafts Considering Borehole Roughness

굴착면 거칠기를 고려한 암반 근입 현장타설말뚝의 주면 하중전이함수 제안

  • Published : 2006.07.30

Abstract

Shear load transfer characteristics of rock-socketed drilled shafts were analyzed. The constant normal stiffness (CNS) direct shear tests were performed to identify the major influencing factors of shaft resistance, i.e., unconfined compressive strength, borehole roughness, normal stiffness, initial confining stress, and material properties. Based on the CNS tests, shear load transfer function of drilled shafts in rocks is proposed using borehole roughness and the geological strength index (GSI), which indicates discontinuity and surface condition of rock mass in Hoek-Brown criterion (1997). The proposed load-transfer function was verified by the load test results of seven rock-socketed drilled test shafts subjected to axial loads. Through comparisons of the results of load tests, it is found that the load-transfer function by the present study is in good agreement with the general trend observed by in situ measurements, and thus represents a significant improvement in the prediction of load transfer of drilled shafts.

본 연구에서는 암반에 근입된 현장타설말뚝의 주면하중전이특성을 분석하기 위하여, 주요 영향요소(일축압축강도, 거칠기, 수직강성, 초기구속응력, 재료성질)에 따라 일정수직강성(Constant Normal Stiffness, CNS)조건의 직접전단시험을 수행하였다. 그 결과 암반에 근입된 현장타설말뚝의 주변하중전이특성을 3구간으로 이상화할 수 있었으며, 각 구간에서의 거동을 지배하는 주요 요소의 영향 및 그에 따른 거동을 파악할 수 있었다. 이를 토대로 암반의 절리 및 풍화상태를 나타내는 GSI(Geological Strength Index)를 이용한 Hoek-Brown 파괴기준(1997)을 적용하여, 암반에 근입된 현장타설말뚝의 굴착면 거칠기를 고려한 새로운 주면 하중전이함수를 제안하였다. 제안된 하중전이함수는 기존 7본의 말뚝 재하시험 결과와 비교분석을 수행하였으며, 그 결과 본 제안식이 암반 굴착면의 거칠기 및 암반특성을 적절히 반영함을 알 수 있었다.

Keywords

References

  1. 권오성 (2004), 암반의 풍화도가 암반근입 말뚝의 지지거동에 미치는 영향, 박사학위논문, 서울대학교
  2. 이명환, 조천환, 유한규, 권형구 (2003), '국내 암반에 근입된 현장타설말뚝의 소켓벽면 거칠기에 관한 연구', 한국지반공학회학술대회 논문집, pp.431-438
  3. 정성준, 김정환, 이현근, 김명모 (2005), 'LRFD 설계법에 따른 인천대교 현장 타설 말뚝의 지지력 산정', 대한토목학회 학술대회 논문집. pp.3929-3932
  4. Baquelin, F. (1982), 'Rules for the structural design of foundations based on the selfboring pressuremeter test', Symp. on the Pressuremeter and Its Marine Application, IFP, Paris, pp.347-362
  5. Barton, N. R and Choubey, V. (1977), 'The shear strength of rock joints in theory and practice', Rock Mech., Vol.10, pp.1-54 https://doi.org/10.1007/BF01261801
  6. Boresi, A. P. (1965), Elasticity in engineering mechanics. PrenticeHall, Englewood Cliffs, N.J
  7. Clayton, C. R. and Milititsky, J. (1983), 'Installation effects and the performance of bored pile in stiff clay', Ground Engineering, Vol.16, No.2, pp.17-22
  8. Clear, C. A. and Harrison, T. A. (1985), Concrete pressure on formwork. Report 108, Construction Industry Research and Information Association, London
  9. Hoek, E. and Brown, E. T. (1997), 'Practical estimates of rock mass strength', Intnl. J. Rock Mech. & Mining Sci. & Geomechanics Abstracts. Vol.34, No.8, pp.1165-1186 https://doi.org/10.1016/S1365-1609(97)80069-X
  10. Horvath, R. G., Kenny. T. C. (1979), 'Shaft resistance of rock-socketed drilled piers', ASCE National Convention, Proceeding of the Symposium of Deep Foundations, Atlanta, pp.183-214
  11. Horvath, R. G., Kenny. T. C. and Kozicki, p., (1983), 'Method of improving the performance of drilled piers in weak rock', Canadian Geotechnical Journal, Vol.20, pp.758-772 https://doi.org/10.1139/t83-081
  12. Indraratna, B., Haque, A. and Aziz, N. (1999), 'Shear behavior of idealized in filled joints under constant normal stiffness', Geotechnique, Vol.49, No.3, pp.331-355 https://doi.org/10.1680/geot.1999.49.3.331
  13. Johnston, I. W., Lam, T. S. K. and Williams, A. F. (1987), 'Constant normal stiffness direct shear testing for socketed pile design in weak rock', Geotechnique, Vol.37, No.1, pp.83-89 https://doi.org/10.1680/geot.1987.37.1.83
  14. Kim, S. I., Jeong, S. S., Cho, S. H. and Park, I. J. (1999), 'Shear Load Transter Characeteristics of Drilled Shafts in Weathered Rocks', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, pp.999-1010
  15. Lam, T. S. K., and Johnston I. W. (1982), 'A constant normal stiffness direct shear machine', Proceedings of the Seventh Southest Asian Geotechnical Conference', Hong Kong, pp 805-820
  16. Ladanyi, B., and Archambault, G. (1970), 'Simulation of shear behaviour of a jointed rock mass', Proc. 11th Symp. on Rock mechanics. Rock Mechanics: Theory and Practice, pp.105-125
  17. Lings, M. L., Ng, C. W. W., and Nash, D. F. T. (1994), 'The lateral pressure of wet concrete in diaphragm wall panels cast under bentonite', Proceedings of the Institution of Civil Engineers, Geotechnical Engineering, Vol.107, pp.163-172
  18. Nam, M. S., (2004), Improved design for drilled shafts in rock, Ph.D. Thesis, University of Houston
  19. O'Neill, M. W., Townsend, F. C., Hanssan, K. M., Buller, A. and Chan, P. S. (1995), Load transfer for drilled shafts in intermediate geomatrials, FHWA-RD-95-XXX Draft report U.S. Department of Transportation
  20. Seidel J. P, Harberfield C. M. (1995), 'Towards an understanding of Joint Roughness', Rock Mechanics and Rock Engineering Journal, Vol.28, No.2, pp.69-92 https://doi.org/10.1007/BF01020062
  21. Seidel, J. P. and Collingwood, B. (2001), 'A new socket roughness factor for prediction of rock socket shaft resistance', Canadian Geotechnical Journal, Vol.38, No.1, pp.138-153 https://doi.org/10.1139/cgj-38-1-138