KSII Transactions on Internet and Information Systems (TIIS)
/
제15권4호
/
pp.1263-1274
/
2021
In online competitive social networks, each user can be influenced by different competing influencers and consequently chooses different products. But their interest may change over time and may have swings between different products. The existing influence spreading models seldom take into account the time-related shifts. This paper proposes a minimum cost influence maximization algorithm based on the competitive transition probability. In the model, we set a one-dimensional vector for each node to record the probability that the node chooses each different competing influencer. In the process of propagation, the influence maximization on Competitive Linear Threshold (IMCLT) spreading model is proposed. This model does not determine by which competing influencer the node is activated, but sets different weights for all competing influencers. In the process of spreading, we select the seed nodes according to the cost function of each node, and evaluate the final influence based on the competitive transition probability. Experiments on different datasets show that the proposed minimum cost competitive influence maximization algorithm based on IMCLT spreading model has excellent performance compared with other methods, and the computational performance of the method is also reasonable.
Purpose The purpose of this study is to enhance the accuracy score of personal credit scoring using the convolutional neural networks and secure the transparency of the deep learning model using eXplainalbe Artifical Inteligence(XAI) technique. Design/methodology/approach This study built a classification model by using the convolutional neural networks(CNN) and applied a methodology that is transformation of numerical data to imaged data to apply CNN on personal credit data. Then layer-wise relevance propagation(LRP) was applied to model we constructed to find what variables are more influenced to the output value. Findings According to the empirical analysis result, this study confirmed that accuracy score by model using CNN is highest among other models using logistic regression, neural networks, and support vector machines. In addition, With the LRP that is one of the technique of XAI, variables that have a great influence on calculating the output value for each observation could be found.
Nuclear power plants contain several monitoring systems that can identify the in-vessel phenomena of a severe accident (SA). Though a lot of analysis and research is carried out on SA, right from the development of the nuclear industry, not all the possible circumstances are taken into consideration. Therefore, to improve the efficacy of the safety of nuclear power plants, additional analytical studies are needed that can directly monitor severe accident phenomena. This paper presents an interacting multiple model (IMM) based fault detection and diagnosis (FDD) approach for the identification of in-vessel phenomena to provide the accident propagation information using reactor vessel (RV) out-wall temperature distribution during severe accidents in a nuclear power plant. The estimation of wall temperature is treated as a state estimation problem where the time-varying wall temperature is estimated using IMM employing three multiple models for temperature evolution. From the estimated RV out-wall temperature and rate of temperature, the in-vessel phenomena are identified such as core meltdown, corium relocation, reactor vessel damage, reflooding, etc. We tested the proposed method with five different types of SA scenarios and the results show that the proposed method has estimated the outer wall temperature with good accuracy.
The interaction of planar shock wave with rectangular water column is investigated numerically. The flow phenomenon like reflection, transmission, cavitation, recirculation of shock wave, and large negative pressure due to expansion waves was discussed qualitatively and quantitatively. The numerical simulation was performed in a shock tube with a water column, and planar shock was initiated with a pressure ratio of 10. Three cases of the water column with different thicknesses, namely 0.5D, 1D, and 2D, were installed and studied. Water naturally has a higher acoustic impedance than air and mitigates the shock wave considerably. The numerical simulations were modelled using Eulerian and Volume of fluids multiphase models. The Eulerian model assumes the water as a finite structure and can visualize the shockwave propagation inside the water column. Through the volume of fluids model, the stages of breakup of the water column and mitigation effects of water were addressed. The numerical model was validated against the experimental results. The computational results show that the installation of a water column significantly impacts the mitigation of shock wave.
본 연구에서는 자유수면 흐름에 적용할 수 있는 연직방향에 대해 좌표변환된 3차원 동수압 모형을 제시하였다. 제시한 모형은 자유수면과 동수압의 해석을 위하여, 2중 예측-수정(double predictor-corrector)방법을 적용하였다. 본 연구에서는 정확한 동역학적 경계조건(자유수면에서의 압력은 0인 조건)을 적용하는 방법을 검토하였고, 이 경계조건은 기존에 개발된 모형에 미소한 수정을 통하여 적용 가능함을 보여주었다. 본 연구에서 제시한 모형과 기존 모형의 계산결과를 비교하였을 때 동역학적 경계조건의 정확한 적용이 매우 중요함을 알 수 있다.
Su-Kyeong Geum;Jong-Han Lee;Dohyoung Shin;Jiyoung Min
Structural Engineering and Mechanics
/
제90권6호
/
pp.591-600
/
2024
This study investigated the acceleration response and shape change characteristics of a gravity quay wall according to the magnitude of the applied acceleration. The quay wall was defined as a port facility damaged by the Kobe earthquake. Four experimental scenarios were established based on the inclination condition grades, considered to be a significant defect factor in the quay wall. Then, the shaking table test was conducted using scaled-down quay wall models constructed per each scenario. The ground acceleration was gradually increased from the peak ground acceleration (PGA) of 0.1 g to 0.7 g. After each ground acceleration test, acceleration installed on the wall and backfill ground and inclination on the top of the wall were measured to assess the amplification of peak response acceleration and maximum response amplitude and the change in the inclination of the quay wall. This study also analyzed the separation of the quay wall from the backfill and the crack pattern of the backfill ground according to PGA values and inclination condition grades. The result of this study shows that response acceleration could provide a reasonable prediction for the changes in the inclination of the quay wall and the crack generation and propagation on the backfill from a current inclination condition grade.
This study explores the failure mechanisms of 'I' shaped non-persistent cracks under uniaxial loads through a combination of experimental tests and numerical simulations. Concrete specimens measuring 200 mm×200 mm×50 mm were manufactured, featuring 'I' shaped non-persistent joints. The number of these joints varied from one to three, with angles set at 0, 30, 60, and 90 degrees. Twelve configurations, differing in the placement of pre-existing joints, were considered, where larger joints measured 80 mm in length and smaller cracks persisted for 20 mm with a 1 mm crack opening. Numerical models were developed for the 12 specimens, and loading in Y-axis direction was 0.05 mm/min, considering a concrete tensile strength of 5 MPa. Results reveal that crack starting was primarily influenced by the slope of joint that lacks persistence in relation to the loading direction and the number of joints. The compressive strength of the samples exhibited variations based on joint layout and failure mode. The study reveals a correlation between the failure behavior of joints and the number of induced tensile fracture, which increased with higher joint angles. Specimen strength increased with decreasing joint angles and numbers. The strength and failure processes exhibited similarities in both laboratory testing and numerical modeling methods.
Cherfi Mohamed;Zagane Mohammed El Sallah;Moulgada Abdelmadjid;Ait Kaci Djafar;Benouis Ali;Zahi Rachid;Sahli Abderahmen
Structural Engineering and Mechanics
/
제91권3호
/
pp.251-262
/
2024
Numerical modeling using the finite element method (FEM) offers crucial insights into the mechanical behavior of prostheses, including stress and strain distribution, load transfer, and stress intensity factors. Analyzing cracking in PMMA surgical cement (polymethylmethacrylate) for total hip prostheses (THP) is essential for understanding the loosening phenomenon, as the rupture of orthopedic cement is a primary cause. By understanding various failure mechanisms, significant advancements in cemented total prostheses can be achieved. This study performed a numerical analysis using a 3D FEM model to evaluate stress levels in different THP models, aiming to model damage in the orthopedic cement used in total hip arthroplasty. Utilizing ABAQUS software, FEM, and XFEM, the damage in three types of THPs-Charnley (CMK3), Osteal (BM3), and THOMPSON was modeled under stumbling loading conditions. XFEM allowed for the consideration of crack propagation between the cement and bone, while the GEARING criterion employed a user-defined field subroutine to model damage parameters. The study's findings can contribute to improving implant fixation techniques and preventing postoperative complications in orthopedic surgery.
Biao Liu;Feng Xue;Yu-Ting Wu;Guo-Liang Bai;Zheng-Zhong Wang
Computers and Concrete
/
제34권4호
/
pp.427-446
/
2024
The I-shaped steel reinforced recycled aggregate concrete (SRRC) composite structure has the advantages of high bearing capacity and environmental protection, and the interfacial bond strength is an important theory. To this end, the I-shaped SRRC bond strength and its calculation based on artificial neural network (ANN) will be studied. Firstly, 39 push out tests of I-shaped SRRC were conducted, the load-slip curve has obvious regularity, which is divided into 4 segments by 3 regular points. Three bond strengths were defined based on these three rule points, and the approximate ranges of their values and the laws of influence of each factor on them were found. Secondly, the Elman ANN model used for the prediction of bond strength was established, and the parameters of Elman ANN predicting I-shaped SRRC bond strength were studied, and the effects of detailed parameters on the prediction results were revealed. Finally, the bond strength of SRRC was predicted using Elman and BP (back propagation) neural network models, both of which showed good prediction results. This study is a theoretical basis for the design and fine simulation of I-shaped SRRC composite structures.
여러 분야에서 사용되는 이미지 분류를 위한 딥러닝(Deep Learning) 모델은 오류 역전파 방법을 통해 미분을 구현하고 미분 값을 통해 예측 상의 오류를 학습한다. 엄청난 계산량을 향상된 계산 능력으로 해결하여, 복잡하게 설계된 모델에서도 파라미터의 전역 (혹은 국소) 최적점을 찾을 수 있다는 것이 장점이다. 하지만 정교하게 계산된 데이터를 만들어내면 이 딥러닝 모델을 '속여' 모델의 예측 정확도와 같은 성능을 저하시킬 수 있다. 이렇게 생성된 적대적 사례는 딥러닝을 저해할 수 있을 뿐 아니라, 사람의 눈으로는 쉽게 발견할 수 없도록 정교하게 계산되어 있다. 본 연구에서는 임의의 잡음 신호를 추가하는 방법을 통해 적대적으로 생성된 이미지 데이터셋을 탐지하는 방안을 제안한다. 임의의 잡음 신호를 추가하였을 때 일반적인 데이터셋은 예측 정확도가 거의 변하지 않는 반면, 적대적 데이터셋의 예측 정확도는 크게 변한다는 특성을 이용한다. 실험은 공격 기법(FGSM, Saliency Map)과 잡음 신호의 세기 수준(픽셀 최댓값 255 기준 0-19) 두 가지 변수를 독립 변수로 설정하고 임의의 잡음 신호를 추가하였을 때의 예측 정확도 차이를 종속 변수로 설정하여 시뮬레이션을 진행하였다. 각 변수별로 일반적 데이터셋과 적대적 데이터셋을 구분하는 탐지 역치를 도출하였으며, 이 탐지 역치를 통해 적대적 데이터셋을 탐지할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.