• Title/Summary/Keyword: propagate

Search Result 625, Processing Time 0.027 seconds

Characteristics of artificial lightweight fine aggregates manufactured by using a vertical fluidizing furnace (수직형 유동층로에서 제조된 인공경량 세골재의 특성)

  • Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.1
    • /
    • pp.54-59
    • /
    • 2009
  • It was difficult for the existing rotary kiln to fabricate the fine aggregates under 3 mm due to the sticking phenomenon between specimens. In this study, the vertical type fluidizing furnace was designed and manufactured by which the lightweight fine aggregates of specific gravity $1.1{\sim}1.7$, water absorption $11{\sim}19%$ could be fabricated from the green body of clay: stone sludge: spent bleaching clay = 60 : 30 : 10 (wt%) without sticking-together happening. The minimum sintering temperature for bloating of aggregates was $1130^{\circ}C$. The specimens sintered over $1140^{\circ}C$ showed the typical bloating characteristics of lightweight aggregates and an inner layer was discovered due to widened cracks on a surface. But the crack on a surface did not propagate into a black core area so had no effect on a water absorption of aggregates. The sintering temperature made the thickness of shell and the black core area thin and expanded respectively but the sintering time did not affect the microsturcture of aggregates. The water absorption of aggregates decreased with increasing temperature owing to increased amount of liquid formed on a surface. Also sintering time affected a lot on a water absorption because it takes a time to form a liquid, which change the open pores to closed pores by blocking.

Reverse-time migration using the Poynting vector (포인팅 벡터를 이용한 역시간 구조보정)

  • Yoon, Kwang-Jin;Marfurt, Kurt J.
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.102-107
    • /
    • 2006
  • Recently, rapid developments in computer hardware have enabled reverse-time migration to be applied to various production imaging problems. As a wave-equation technique using the two-way wave equation, reverse-time migration can handle not only multi-path arrivals but also steep dips and overturned reflections. However, reverse-time migration causes unwanted artefacts, which arise from the two-way characteristics of the hyperbolic wave equation. Zero-lag cross correlation with diving waves, head waves and back-scattered waves result in spurious artefacts. These strong artefacts have the common feature that the correlating forward and backward wavefields propagate in almost the opposite direction to each other at each correlation point. This is because the ray paths of the forward and backward wavefields are almost identical. In this paper, we present several tactics to avoid artefacts in shot-domain reverse-time migration. Simple muting of a shot gather before migration, or wavefront migration which performs correlation only within a time window following first arriving travel times, are useful in suppressing artefacts. Calculating the wave propagation direction from the Poynting vector gives rise to a new imaging condition, which can eliminate strong artefacts and can produce common image gathers in the reflection angle domain.

Insecticidal Effect of Cockroach Baits and their Persistent Efficacy Against the German Cockroach, Blattella germanica (바퀴 독먹이제의 살충 효과 및 지속성 검증)

  • Moon, KyungHwan;Kim, Namjin;Kim, Young Ho
    • Korean journal of applied entomology
    • /
    • v.59 no.1
    • /
    • pp.5-13
    • /
    • 2020
  • Cockroaches are a not only nuisance insects but also have medical importance as they mechanically propagate various pathogens. To date, baits have been widely suggested for use in cockroach control. In this study, we investigated the insecticidal effects of three Korean baits-Korea Combat Ultra Slim (K-CUS), Korea Combat Power (K-CP), and Korea Zaps Dual Bait (K-ZDB)-and three US baits-US Combat Source Kill Max (US-CSKM), US Hot Shot MaxAttrax Roach Bait (US-HSM), and US Raid Double Control Small Roach Bait (US-RDC)-on the German cockroach (Blattella germanica). Among the six baits, three (K-CUS, K-CP, and US-CSKM), the main active ingredients of fipronil, showed rapid and strong insecticidal efficacy. In addition, we compared the persistence of the insecticidal effects of K-CUS and K-CP 6 months and 12 months after initial opening. Insecticidal effects of both baits decreased over time, but the mortality rates of cockroaches exposed to 6-month- and 12-month-aged baits were over 90%, suggesting that these baits can maintain their insecticidal effect for at least one year after indoor installation.

Comparison of Mineralization in Each Passage of Dental Pulp Stem Cells from Supernumerary Tooth (과잉치 치수 세포의 계대별 석회화 비교)

  • Shin, Jisun;Kim, Jongbin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.44 no.3
    • /
    • pp.350-357
    • /
    • 2017
  • The purpose of this study was to evaluate the difference of differentiation potential in each passage of dental pulp stem cells from supernumerary tooth (sDPSCs). The sDPSCs were obtained from a healthy 6-year-old male patient under the guidelines and got the informed consent. Cells were cultured until passage number 16 and divided into two groups; 1 - 8 passages as a young group and 9 - 16 passages as an old group. It was taken $2.25{\pm}0.46days$ in a young group and $3.25{\pm}0.46days$ in an old group to propagate cells of each passage until confluence and there were statistically significant differences between two groups (p < 0.05). In every passage, cell morphology was observed with microscope and evaluated the capacity to form high levels of minerals by alizarin red solution staining after treating differentiation medium. Fibroblast-like, spindle shaped, elongated cells and a few nodules were found in uninduced cultures of passage number 1, 8 and 9. But at 16 passage culture, cell size became larger and broader and observed with more nodules. After inducing differentiation, mineralized nodules were detected at the first passage of 7th day culture whereas at the 8 passage culture, nodules were seen clearly at 14th day culture. In addition, the amount of mineralized nodules were remarkably decreased after passage 9. From the data presented in this study, it is recommended to use sDPSCs of passage number within 8 for utilizing as stem cells.

A Fundamental Study on the Development of Highly Efficient Models of Rain Shelter (비가림시설의 효율적 형태 개발에 관한 기초 연구)

  • 손정익;김문기;권영삼;남상운;윤남균
    • Journal of Bio-Environment Control
    • /
    • v.4 no.1
    • /
    • pp.32-42
    • /
    • 1995
  • Cultivation using rain shelter is very popular in summer because rain shelter has a simple structure using less materials than any other regular greenhouse. Although it has a main advantage of easy construction in terms of labour, time and cost, it has some disadvantage of poor ventilation and rain fall inflow. Therefore, the rain shelters being able to overcome the problems, to some extent, are necessary to propagate for practical purpose. Three characteristic types of rain shelter were analyzed using measured and simulated environment data. Type 1 was a conventional type with an arched roof, and Type 2 and Type 3 were improved ones which were designed to have three arched roofs and three sawtooth like roofs with the openings for ventilation, respectively. The distribution of inside temperature measured was relatively uniform in Type 2 and 3 by the natural ventilation through the openings of the roof compared to Type 1 which had no openings. The relative light transmittance measured in Type 2 and 3 showed lower than that in Type 1, which suppressed the rise of inside temperature, For more accurate comparison, the differences between inside and outside temperatures to various wind speeds were calculated by the model. The difference in Type 1 was the greatest at lower wind speed below 1 ㎧, that is, the highest in inside temperature, but decreased rapidly as wind speed increased above 1 ㎧. Measured temperatures generally showed the same trends as calculated ones by the model. As a whole, the improved rain shelters(Type 2 and 3) showed better performance than the conventional one in ventilation as well as inside temperature.

  • PDF

Laboratory Experiment of Two-Layered Fluid in a Rotating Cylindrical Container (Simulation of polar Front) (원통형 이층유체의 회전반실험 (극전선 모의))

  • 나정열;최진영
    • 한국해양학회지
    • /
    • v.29 no.3
    • /
    • pp.296-303
    • /
    • 1994
  • Rotating right cylinder of rigid sloping boundaries(top-bottom) is filled with two-layered fluid. External fluid which has the same density as the lower-layer is pumped through the rim boundary at the bottom, and this induces uniform vertical velocity in the interior that produces the Sverdrup type motion such as southward flowing western boundary current with northward interior horizontal motion. The rigid sloping upper boundary meets with lower layer to simulate so called "polar front", and the upper-layer motion influenced by the lower-layer flow has been observed. Barotropic motion in the western part of the basin while baroclinic motion in the eastern half is always present. In particular, both southward flowing eastern boundary flow and western boundary flow meets near the western wall and it induces northward western boundary flow to separate from the boundary With increased ${\beta}$-effect on the upper0layer the width of western boundary decreases and the separated western boundary flow moves into the interior to form an eddy-like motion. Baroclinic Rosebay wave clearly observed in the easter boundary slowly propagates to the west but it seems to be decayed before travelling to the western boundary. A local topograpic effect imposed on the lower-layer causes very sensitive response of upper layer boundary flows. In the east standing0wave0like features are observed in the west whereas the width of the boundary increases without any evidence of the separation of the western boundary flow.This may be due to the gact that even the lower-lauer barotropic motion feels the topography its influence does not propagate into the upper-layer. With large ${\beta}$-effect on the upper-layer,relatively large scale waves whose wavelengths are greater than the internal radius deformation exist in the interior.

  • PDF

Design and Implementation of the Chronic Disease Management Platform based on Personal Health Records (개인건강기록 기반 만성질환 관리 플랫폼의 설계 및 구현)

  • Song, Je-Min;Lee, Yong-Jun;Nam, Kwang-Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.1
    • /
    • pp.47-62
    • /
    • 2012
  • To propagate clinical disease management service, there should be built a ecosystem where service developers, service providers, device suppliers closely cooperate for u-Health platform. However, most u-Health platform is difficult to build an effective ecosystem due to the lack of secure and effective PHR(Personal Health Record) management, the lack of personalized and intelligent service, difficulties of N-screen service. To solve these problems we suggest the CDMP(Chronic Disease Management Platform) architecture. The CDMP is a software platform that provides the core functions to develop the chronic disease management services and performs a hub function for the link and integration rbetween various services and systems. CDMP is SOA based platform that enables a provision of reusability, expansibility and it provides open API where everybody can share information, contents and services easily. CDMP supports the multi platform system foN-screen service and the self management functions via SNS. In this paper, we design and implement the CDMP including PHR service based on hybrid data model for privacy preservation. Experiment results prove the effectiveness of hybrid model-based PHR service.

A Fully Coupled Hydrogeomechanical Numerical Analysis of Rainfall Impacts on Groundwater Flow in Slopes and Slope Stability (사면 내의 지하수 유동과 사면의 안정성에 대한 강수 영향의 완전 연동된 수리지질역학적 수치 해석)

  • 김준모
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.5-16
    • /
    • 2002
  • A hydrogeomechanical numerical model is presented to evaluate rainfall impacts on groundwater flow in slopes and slope stability. This numerical model is developed based on the fully coupled poroelastic governing equations for groundwater flow in deforming variably saturated geologic media and the Galerkin finite element method. A series of numerical experiments using the model developed are then applied to an unsaturated slope under various rainfall rates. The numerical simulation results show that the overall hydromechanical slope stability deteriorates, and the potential failure nay initiate from the slope toe and propagate toward the slope crest as the rainfall rate increases. From the viewpoint of hydrogeology, the pressure head and hence the total hydraulic head increase as the rainfall rate increases. As a result, the groundwater table rises, the unsaturated zone reduces, the seepage face expands from the slope toe toward the slope crest, and the groundwater flow velocity increases along the seepage face. From the viewpoint of geomechanics, the horizontal displacement increases, and the vertical displacement decreases toward the slope toe as the rainfall rate increases. This may result from the buoyancy effect associated with the groundwater table rise as the rainfall rate increases. As a result, the overall deformation intensifies toward the slope toe, and the unstable zone, in which the factor of safety against shear failure is less than 1, becomes thicker near the slope toe and propagates from the slope toe toward the slope crest. The numerical simulation results also suggest that the potential tension failure is likely to occur within the slope between the potential shear failure surface and the ground surface.

Magnetic Resonance Elastography (자기 공명 탄성법)

  • Kim, Dong-Hyun;Yang, Jae-Won;Kim, Myeong-Jin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.1
    • /
    • pp.10-19
    • /
    • 2007
  • Conventional MRI methods using T1-, T2-, diffusion-, perfusion-weighting, and functional imaging rely on characterizing the physical and functional properties of the tissue. In this review, we introduce an imaging modality based on measured the mechanical properties of soft tissue, namely magnetic resonance elastography (MRE). The use of palpation to identify the stiffness of tissue remains a fundamental diagnostic tool. MRE can quantify the stiffness of the tissue thereby providing a objective means to measure the mechanical properties. To accomplish a successful clinical setting using MRE, hardware and software techniques in the area of transducer, pulse sequence, and imaging processing algorithm need to be developed. Transducer, a mechanical vibrator, is the core of MRE application to make wave propagate invivo. For this reason, considerations of the frame of human body, pressure and friction of the interface, and high magnetic field of a MRI system needs to be taken into account when designing a transducer. Given that the wave propagates through human body effectively, developing an appropriate pulse sequence is another important issue in obtaining an optimal image. In this review paper, we introduce the technical aspects needed for MRE experiments and introduce several applications of this new field.

  • PDF

Studies on Germination Rates and Early Seedling Growth Characteristics by Different Storing Temperatures, Durations, and Methods in Aralia cordata var. continentalis (Kitagawa) Y.C.Chu (독활 종자의 저장온도, 기간 및 방법에 따른 발아율과 유묘 생육특성 연구)

  • Lee, Gyeong A;Kim, Do Hyun;Kim, Min Su;Wu, Wen Guo;Kim, Young Gook;Ahn, Young Sup;Park, Chung Beom;Song, Beom Heon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.1
    • /
    • pp.20-26
    • /
    • 2013
  • This study was conducted to improve the managing and storing methods of the seeds of Aralia cordata var. continentalis (Kitagawa) Y.C.Chu, to examine the viability and the germination ability of seeds with different storing conditions and methods, and to develop new ways to propagate and have better healthy seedling. Therefore, the germination rate, days required for germinating seeds, and early growth responses of Aralia cordata var. continentalis (Kitagawa) Y.C.Chu were investigated with different storing temperatures, durations and methods. The germination rate was higher in stratified storage than that in dry storage condition. The highest germination rate was with outdoor temperature at 30 days after stratified storage. The days required for germinating seeds were less than 10 days with the treatment of $25^{\circ}C$ and outdoor temperature in stratified storage. In dry condition, they were shorter with $4^{\circ}C$ and $25^{\circ}C$ than those with $-20^{\circ}C$ and outdoor temperature. Leaf number of seedling was higher in stratified storage compared to that in dry condition, while it was not clearly different according to storage temperatures and durations. Leaf length and leaf width of seedling was not difference among the treatment of storage methods, temperatures, and durations. Stem length of seedling was higher in stratified storage than those in dry condition, while root length was not clearly different among the treatments. It would be assumed that temperatures, methods and durations of storage could affect much to the germination rate and the early seedling growth response.