• Title/Summary/Keyword: projection matrix

Search Result 181, Processing Time 0.03 seconds

Orthogonalization principle for hybrid control of robot arms under geometric constraint

  • Arimoto, Suguru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.1-6
    • /
    • 1992
  • A principle of "orthogonalization" is proposed as an extended notion of hybrid (force and position) control for robot manipulators under geometric endpoint constraints. The principle realizes the hybrid control in a strict sense by letting position and velocity feedback signals be orthogonal in joint space to the contact force vector whose components are exerted at corresponding joints. This orthogonalization is executed via a projection matrix computed in real-time from a gradient of the equation of the surface in joint coordinates and hence both projected position and velocity feedback signals become perpendicular to the force vector that is normal to the surface at the contact point in joint space. To show the important role of the principle in control of robot manipulators, three basic problems are analyzed, the first is a hybrid trajectory tracking problem by means of a "modified hybrid computed torque method", the second is a model-based adaptive control problem for robot manipulators under geometric endpoint constraints, and the third is an iterative learning control problem. It is shown that the passivity of residual error dynamics of robots follows from the orthogonalization principle and it plays a crucial role in convergence properties of both positional and force error signals.force error signals.

  • PDF

A New Linear Explicit Camera Calibration Method (새로운 선형의 외형적 카메라 보정 기법)

  • Do, Yongtae
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.66-71
    • /
    • 2014
  • Vision is the most important sensing capability for both men and sensory smart machines, such as intelligent robots. Sensed real 3D world and its 2D camera image can be related mathematically by a process called camera calibration. In this paper, we present a novel linear solution of camera calibration. Unlike most existing linear calibration methods, the proposed technique of this paper can identify camera parameters explicitly. Through the step-by-step procedure of the proposed method, the real physical elements of the perspective projection transformation matrix between 3D points and the corresponding 2D image points can be identified. This explicit solution will be useful for many practical 3D sensing applications including robotics. We verified the proposed method by using various cameras of different conditions.

Trimmed surface analysis based on T-spline FEM (T-스플라인 유한요소해석을 이용한 트림 곡면 해석)

  • Kim, Hyun-Jung;Seo, Yu-Deok;Youn, Sung-Kie
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.612-617
    • /
    • 2008
  • In this present work, trimmed surface analysis for the 2D elasticity problem is presented. The main benefit of the proposed method is that no additional modeling for analysis of a trimmed surface is necessary. As the first attempt to deal with a trimmed surface in spline FEM, the information of the trimming curve and trimmed surface exported from CAD system is directly utilized for analysis. For this, trimmed elements are searched through employing projection scheme. For the integration of the trimmed elements, NURBSenhanced integration scheme which is used in NEFEM is adopted. The quadtree refinement of integration cell is performed for the complicated trimmed cases. The information of trimming curve is used for obtaining integration points as well as constructing stiffness matrix. The robustness and effectiveness of the proposed method are investigated by presenting various numerical examples.

  • PDF

Homogeneous and Non-homogeneous Polynomial Based Eigenspaces to Extract the Features on Facial Images

  • Muntasa, Arif
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.591-611
    • /
    • 2016
  • High dimensional space is the biggest problem when classification process is carried out, because it takes longer time for computation, so that the costs involved are also expensive. In this research, the facial space generated from homogeneous and non-homogeneous polynomial was proposed to extract the facial image features. The homogeneous and non-homogeneous polynomial-based eigenspaces are the second opinion of the feature extraction of an appearance method to solve non-linear features. The kernel trick has been used to complete the matrix computation on the homogeneous and non-homogeneous polynomial. The weight and projection of the new feature space of the proposed method have been evaluated by using the three face image databases, i.e., the YALE, the ORL, and the UoB. The experimental results have produced the highest recognition rate 94.44%, 97.5%, and 94% for the YALE, ORL, and UoB, respectively. The results explain that the proposed method has produced the higher recognition than the other methods, such as the Eigenface, Fisherface, Laplacianfaces, and O-Laplacianfaces.

A Spatial Regularization of LDA for Face Recognition

  • Park, Lae-Jeong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.95-100
    • /
    • 2010
  • This paper proposes a new spatial regularization of Fisher linear discriminant analysis (LDA) to reduce the overfitting due to small size sample (SSS) problem in face recognition. Many regularized LDAs have been proposed to alleviate the overfitting by regularizing an estimate of the within-class scatter matrix. Spatial regularization methods have been suggested that make the discriminant vectors spatially smooth, leading to mitigation of the overfitting. As a generalized version of the spatially regularized LDA, the proposed regularized LDA utilizes the non-uniformity of spatial correlation structures in face images in adding a spatial smoothness constraint into an LDA framework. The region-dependent spatial regularization is advantageous for capturing the non-flat spatial correlation structure within face image as well as obtaining a spatially smooth projection of LDA. Experimental results on public face databases such as ORL and CMU PIE show that the proposed regularized LDA performs well especially when the number of training images per individual is quite small, compared with other regularized LDAs.

Vehicle Image Recognition Using Deep Convolution Neural Network and Compressed Dictionary Learning

  • Zhou, Yanyan
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.411-425
    • /
    • 2021
  • In this paper, a vehicle recognition algorithm based on deep convolutional neural network and compression dictionary is proposed. Firstly, the network structure of fine vehicle recognition based on convolutional neural network is introduced. Then, a vehicle recognition system based on multi-scale pyramid convolutional neural network is constructed. The contribution of different networks to the recognition results is adjusted by the adaptive fusion method that adjusts the network according to the recognition accuracy of a single network. The proportion of output in the network output of the entire multiscale network. Then, the compressed dictionary learning and the data dimension reduction are carried out using the effective block structure method combined with very sparse random projection matrix, which solves the computational complexity caused by high-dimensional features and shortens the dictionary learning time. Finally, the sparse representation classification method is used to realize vehicle type recognition. The experimental results show that the detection effect of the proposed algorithm is stable in sunny, cloudy and rainy weather, and it has strong adaptability to typical application scenarios such as occlusion and blurring, with an average recognition rate of more than 95%.

THE INDEFINITE LANCZOS J-BIOTHOGONALIZATION ALGORITHM FOR SOLVING LARGE NON-J-SYMMETRIC LINEAR SYSTEMS

  • KAMALVAND, MOJTABA GHASEMI;ASIL, KOBRA NIAZI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.4
    • /
    • pp.375-385
    • /
    • 2020
  • In this paper, a special indefinite inner product, named hyperbolic scalar product, is used and all acquired results have been raised and proved with the proviso that the space is equipped with this indefinite scalar product. The main objective is to be introduced and applied an indefinite oblique projection method, called Indefinite Lanczos J-biorthogonalizatiom process, which in addition to building a pair of J-biorthogonal bases for two used Krylov subspaces, leads to the introduction of a process for solving large non-J-symmetric linear systems, i.e., Indefinite two-sided Lanczos Algorithm for Linear systems.

Effective Hamiltonian of Doubly Perturbed Systems

  • Sun, Ho-Sung;Kim, Un-Sik;Kim, Yang
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.5
    • /
    • pp.309-311
    • /
    • 1985
  • When a molecule is perturbed by an external field, the perturbed moecue can be described as a doubly perturbed system. Hartree-Fock operator in the absence of the field is the zeroth order Hamiltonian, and a correlation operator and the external field operator are perturbations. The effective Hamiltonian, which is a projection of the total Hamiltonian onto a small finite subspace (usually a valence space), has been formally derived. The influence of the external field to the molecular Hamiltonian itself has been examined within an effective Hamiltonian framework. The first order effective expectation values, for instance electromagnetic transition amplitudes, between valence states are found to be easily calculated - by simply taking matrix elements of the effective external field operator. Implications of the terms in perturbation expansion are discussed.

Signal-Subspace-Based Simple Adaptive Array and Performance Analysis (신호 부공간에 기초한 간단한 적응 어레이 및 성능분석)

  • Choi, Yang-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.162-170
    • /
    • 2010
  • Adaptive arrays reject interferences while preserving the desired signal, exploiting a priori information on its arrival angle. Subspace-based adaptive arrays, which adjust their weight vectors in the signal subspace, have the advantages of fast convergence and robustness to steering vector errors, as compared with the ones in the full dimensional space. However, the complexity of theses subspace-based methods is high because the eigendecomposition of the covariance matrix is required. In this paper, we present a simple subspace-based method based on the PASTd (projection approximation subspace tracking with deflation). The orignal PASTd algorithm is modified such that eigenvectora are orthogonal to each other. The proposed method allows us to significantly reduce the computational complexity, substantially having the same performance as the beamformer with the direct eigendecomposition. In addition to the simple beamforming method, we present theoretical analyses on the SINR (signal-to-interference plus noise ratio) of subspace beamformers to see their behaviors.

A Study on the Synthesis of 6-Pole Dual-Mode Singly Terminated Elliptic Function Filter (6차 단일종단 이중모드 타원응답 필터 합성에 관한 연구)

  • 염인복;이주섭;엄만석;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.506-512
    • /
    • 2003
  • An output multiplexer of manifold type is widely used in a recent satellite transponder f3r its mass and volume reduction. For correct operation, the filter of such a multiplexer must be singly terminated. In this paper, a simple synthesis method of a 6-pole dual-mode singly terminated filter is described. From the transfer function of the filter, network parameters such as in/output terminations and coupling matrix are obtained with the aid of orthogonal projection and plane rotation. The rotation order, pivot, and rotation angle of the plane rotation process are given for easy filter synthesis. Two different-structure filters are taken into consideration and the network parameters of each filter have been obtained from the same transfer function. The method described in this paper can be applied to the other degree singly terminated filter.