• 제목/요약/키워드: process measurement

Search Result 5,167, Processing Time 0.027 seconds

A Method of Test Coverage Measurement Based on BitTorrent for Internet of Things Environment (사물 인터넷 환경을 위한 BitTorrent 알고리즘 기반의 테스트 커버리지 측정기법)

  • Ryu, Hodong;Lee, Woo Jin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.10
    • /
    • pp.365-370
    • /
    • 2014
  • Although Internet of Things already became a new paradigm on service on network, we should pay more effort for studying about its testing method, since humans, things and environments in IoT are connected to each other without any restrictions. Earlier researches based on emulators showed that such virtual devices on emulators had unavoidable gap between them and real things. Furthermore, growth of connection complexity between the devices and loosing of restrictions make the gap wider. Accordingly, in this paper, we suppose a method of test coverage measurement based on BitTorrent for IoT environment. It has cooperation features among homogeneous devices with avoiding the overlapping on each part of whole test process.

Distance measurement using Zigbee communication solution (Zigbee 통신 solution을 이용한 거리 측정)

  • Kim, Young-Keun;Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1830-1834
    • /
    • 2008
  • At the present day, devices for measurement and control of data by wireless based computer have been generalized. The devices with low cost and high performance have been spotlighted. If Zigbee communication solution is used in dangerous places and places that can not in use wire communication, computer can process data without limitation. Zigbee communication solution is effective in power consumption as compared with RF or bluetooth and can use battery. System cost of Zigbee also is very low, so can install lots of nodes. The system made in this paper transmit by wireless many LMCs(Laser Measuring Control) of wireless transmission system for distance measurement and many slave Zigbee to a master Zigbee.

Conceptual design of neutron measurement system for input accountancy in pyroprocessing

  • Lee, Chaehun;Seo, Hee;Menlove, Spencer H.;Menlove, Howard O.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1022-1028
    • /
    • 2020
  • One of the possible options for spent-fuel management in Korea is pyroprocessing, which is a process for electrochemical recycling of spent nuclear fuel. Nuclear material accountancy is considered to be a safeguards measure of fundamental importance, for the purposes of which, the amount of nuclear material in the input and output materials should be measured as accurately as possible by means of chemical analysis and/or non-destructive assay. In the present study, a neutron measurement system based on the fast-neutron energy multiplication (FNEM) and passive neutron albedo reactivity (PNAR) techniques was designed for nuclear material accountancy of a spent-fuel assembly (i.e., the input accountancy of a pyroprocessing facility). Various parameters including inter-detector distance, source-to-detector distance, neutron-reflector material, the structure of a cadmium sleeve around the close detectors, and an air cavity in the moderator were investigated by MCNP6 Monte Carlo simulations in order to maximize its performance. Then, the detector responses with the optimized geometry were estimated for the fresh-fuel assemblies with different 235U enrichments and a spent-fuel assembly. It was found that the measurement technique investigated here has the potential to measure changes in neutron multiplication and, in turn, amount of fissile material.

Minimum detectable activity of plastic scintillator for in-situ beta measurement system in ground water

  • Choi, Woo Nyun;Lee, UkJae;Bae, Jun Woo;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1169-1175
    • /
    • 2019
  • The minimum detectable activity (MDA) value was derived according to the flow rate of the sample and degree of amplification of the device by sending the sample directly from the collection site to the detection part through a pump. This method can lead to reduction in time and cost compared to the existing measurement method that uses a pre-treatment process. In this study, experiments were conducted on $^3H$ and $^{90}Sr$, which are the major pure beta-emitting radionuclides, by setting the sample flow rate and the amplification gain as factors. The MDA values were derived according to the flow rates, considering that the flow rate can affect the MDA values. There were no change in the MDA under different flow rates of 0, 600, 800, and 1000 mL/min. Therefore, it was confirmed that the flow rate may not be considered when collecting samples for monitoring in actual field. As the degree of amplification of the amplifier increased, the time required to reach the target MDA decreased. When the amplification was quadrupled, the detection efficiency increased by approximately 23.4 times, and the time to reach the MDA decreased to approximately 1/550 times. This method offers the advantage of real-time on-site monitoring.

Accuracy Enhancement of Output Measurement by Silicon Crystalline Photo Voltaic (PV) Module Production Process Optimization (Crystalline Silicon Photo Voltaic (PV) Module의 양산 공정 최적화에 의한 Module 출력 측정 정확성 향상)

  • Lee, Jongpil;Lee, Kyu-Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.10-16
    • /
    • 2018
  • In silicon crystalline PV (Photo Voltaic) industry, PV module or panel electric power is directly related to the companies' profit. Thus, many PV companies have invested and focused on R&D activities to get the higher module power. The main BOM (Bills of Material) on the module consists of PV solar cell, ribbon, EVA (Ethylene-Vinyl Acetate copolymer), glass and back sheet. Based on consistent research efforts on enhancing module power using BOM, there have been increase of around 5 watt per module every year as results. However, there are lack of studies related to enhancing accuracy of measurement. In this study, the enhancing on the metrology is investigated and the improvement shows actually contribution to company's profit. Especially, the measurement issues related to heat and to quasi state of bandgap diagram by EL(Electro Luminescence) are described in this study.

Experimental Study of Spacecraft Pose Estimation Algorithm Using Vision-based Sensor

  • Hyun, Jeonghoon;Eun, Youngho;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.263-277
    • /
    • 2018
  • This paper presents a vision-based relative pose estimation algorithm and its validation through both numerical and hardware experiments. The algorithm and the hardware system were simultaneously designed considering actual experimental conditions. Two estimation techniques were utilized to estimate relative pose; one was a nonlinear least square method for initial estimation, and the other was an extended Kalman Filter for subsequent on-line estimation. A measurement model of the vision sensor and equations of motion including nonlinear perturbations were utilized in the estimation process. Numerical simulations were performed and analyzed for both the autonomous docking and formation flying scenarios. A configuration of LED-based beacons was designed to avoid measurement singularity, and its structural information was implemented in the estimation algorithm. The proposed algorithm was verified again in the experimental environment by using the Autonomous Spacecraft Test Environment for Rendezvous In proXimity (ASTERIX) facility. Additionally, a laser distance meter was added to the estimation algorithm to improve the relative position estimation accuracy. Throughout this study, the performance required for autonomous docking could be presented by confirming the change in estimation accuracy with respect to the level of measurement error. In addition, hardware experiments confirmed the effectiveness of the suggested algorithm and its applicability to actual tasks in the real world.

Survey on Annual Excess Trend for Permissible Exposure Limit of Trichloroethylene (트리클로로에틸렌의 허용기준 적용에 따른 연도별 초과 경향 연구)

  • Kim, Ki-Youn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.1
    • /
    • pp.21-26
    • /
    • 2019
  • Objective: The aim of this study is to analyze an excess trend for domestic permissible exposure limit of trichloroethylene based on previous literature review. Materials and Methods: The research object is a trichloroethylene among 13 chemical substances regulated with PEL(Permissible Exposure Limit) in Occupational Safety and Health Act. The information utilized from this study is the work environment measurement data from 2004 to 2013. The highest level among concentration data measured at various workplaces was selected as a representative value through data process. N.D. (Not Detected) data was considered as 1/2 of LOD(Limit Of Detection). Results: Among work environment measurement data between 2004 and 2013, the highest number of excess workplace and excess rate(24 sites & 1.15%) was observed in 2008's data when applying the PEL(50 ppm) of trichloroethylene. When they are compared with the ACGIH's TLV-TWA(10 ppm), 2008's data showed the highest number of excess workplace and excess rate(175 sites & 8.37%). The number of excess workplace and excess rate related to PEL of trichloroethylene showed increase trend in 2005 but tended to decrease after 2008. Conclusions: Based on the results obtained from this study, the exposure level of trichloroethylene in case of domestic workers is not considered as a safe phase regardless of the year of work environment measurement year. Thus, a strictly preventive management in workplace should be provided for reducing exposure level of trichloroethylene.

The software quality measurement based on software reliability model (소프트웨어 신뢰성 모델링 기반 소프트웨어 품질 측정)

  • Jung, Hye-Jung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.45-50
    • /
    • 2019
  • This study proposes a method to measure software reliability according to software reliability measurement model to measure software reliability. The model presented in this study uses the distribution of Non - Homogeneous Poisson Process and presents a measure of the software reliability of the presented model. As a method to select a suitable software reliability growth model according to the presented model, we have studied a method of proposing an appropriate software reliability function by calculating the mean square error according to the estimated value of the reliability function according to the software failure data. In this study, we propose a reliability function to measure the software quality and suggest a method to select the software reliability function from the viewpoint of minimizing the error of the estimation value by applying the failure data.

Design of Counter Circuit for Improving Precision in Distance Measuring System (거리 측정 시스템의 정밀도 향상을 위한 카운터 회로의 설계)

  • Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.885-890
    • /
    • 2020
  • In the distance measurement system the time-to-digital conversion circuit used measures the distance using the time interval between the start signal and the stop signal. The time interval is generally converted to digital information using a counter circuit considering the response speed. Therefore, a clock signal with a high frequency is required to improve precision, and a clock signal with a high frequency is also required to measure fine distances. In this paper, a counter circuit was designed to increase the accuracy of distance measurement while using the same frequency. The circuit design was performed using a 0.18㎛ CMOS process technology, and the operation of the designed circuit was confirmed through HSPICE simulation. As a result of the simulation, it is possible to obtain an improvement of four times the precision compared to the case of using a general counter circuit.

Robust Generalized Labeled Multi-Bernoulli Filter and Smoother for Multiple Target Tracking using Variational Bayesian

  • Li, Peng;Wang, Wenhui;Qiu, Junda;You, Congzhe;Shu, Zhenqiu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.908-928
    • /
    • 2022
  • Multiple target tracking mainly focuses on tracking unknown number of targets in the complex environment of clutter and missed detection. The generalized labeled multi-Bernoulli (GLMB) filter has been shown to be an effective approach and attracted extensive attention. However, in the scenarios where the clutter rate is high or measurement-outliers often occur, the performance of the GLMB filter will significantly decline due to the Gaussian-based likelihood function is sensitive to clutter. To solve this problem, this paper presents a robust GLMB filter and smoother to improve the tracking performance in the scenarios with high clutter rate, low detection probability, and measurement-outliers. Firstly, a Student-T distribution variational Bayesian (TDVB) filtering technology is employed to update targets' states. Then, The likelihood weight in the tracking process is deduced again. Finally, a trajectory smoothing method is proposed to improve the integrative tracking performance. The proposed method are compared with recent multiple target tracking filters, and the simulation results show that the proposed method can effectively improve tracking accuracy in the scenarios with high clutter rate, low detection rate and measurement-outliers. Code is published on GitHub.