• Title/Summary/Keyword: process and worker safety

Search Result 130, Processing Time 0.03 seconds

Types & Characteristics of Chemical Substances used in the LCD Panel Manufacturing Process (LCD 제조공정에서 사용되는 화학물질의 종류 및 특성)

  • Park, Seung-Hyun;Park, Hae Dong;Ro, Jiwon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.310-321
    • /
    • 2019
  • Objectives: The purpose of this study was to investigate types and characteristics of chemical substances used in LCD(Liquid crystal display) panel manufacturing process. Methods: The LCD panel manufacturing process is divided into the fabrication(fab) process and module process. The use of chemical substances by process was investigated at four fab processes and two module processes at two domestic TFT-LCD(Thin film transistor-Liquid crystal display) panel manufacturing sites. Results: LCD panels are manufactured through various unit processes such as sputtering, chemical vapor deposition(CVD), etching, and photolithography, and a range of chemicals are used in each process. Metal target materials including copper, aluminum, and indium tin oxide are used in the sputtering process, and gaseous materials such as phosphine, silane, and chlorine are used in CVD and dry etching processes. Inorganic acids such as hydrofluoric acid, nitric acid and sulfuric acid are used in wet etching process, and photoresist and developer are used in photolithography process. Chemical substances for the alignment of liquid crystal, such as polyimides, liquid crystals, and sealants are used in a liquid crystal process. Adhesives and hardeners for adhesion of driver IC and printed circuit board(PCB) to the LCD panel are used in the module process. Conclusions: LCD panels are produced through dozens of unit processes using various types of chemical substances in clean room facilities. Hazardous substances such as organic solvents, reactive gases, irritants, and toxic substances are used in the manufacturing processes, but periodic workplace monitoring applies only to certain chemical substances by law. Therefore, efforts should be made to minimize worker exposure to chemical substances used in LCD panel manufacturing process.

Control and Investigation for Hazardous Characteristics of Metal Working Fluids Used in Korea - A Study on the Control and Sampling Method for Airborne MWF mist - (우리나라에서 사용하는 광물유의 유해특성과 관리대책에 관한 연구 - 공기중 MWF 미스트의 측정방법과 관리대책 -)

  • Paik, Nam-won;Park, Dong-wook;Yoon, Chung-sik;Cho, Sook-ja;Kim, Shin-bum;Lim, Ho-sub
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.7 no.2
    • /
    • pp.171-180
    • /
    • 1997
  • The objectives of this study were both 10 discuss the sampling method for airborne metalworking fluids(MWF)' mist and 10 suggest measures to minimize worker's exposure to carcinogen contained in metalworking fluids. In order to measure airborne MWF mist, it seems to be appropriate to use NIOSH Method #0500(filler weight) rather than NIOSH Method # 5026(analysis by FTIR). Because MWF mist on PVC filter evaporated and migrated during sampling, worker's exposure to MWF could be underestimated. So, when evaluating worker's exposure to MWF mist, other environmental conditions also must be considered. Enclosure and local exhaust ventilation system seems to he the most effective measure and must be constructed with process facility. In order to control worker exposure to carcinogens contained in MWF, distillation type and condition for crude oil, PAH concentration in MWF, and viscosity index of MWF must legally be described.

  • PDF

Radiological safety evaluation of dismantled radioactive concrete from Kori Unit 1 in the disposal and recycling process

  • Lee, ChoongWie;Kim, Hee Reyoung;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2019-2024
    • /
    • 2021
  • For evaluating the radiological safety of dismantled concrete, the process of disposal and recycling of the radioactive concrete generated during the dismantling of Kori Unit 1 is analyzed. Four scenarios are derived based on the analysis of the concrete recycling and disposal process, and the potential exposure to the workers and public during this process are calculated. VISIPLAN and RESRAD code are used for evaluating the dosages received by the workers and public in the following four scenarios: concrete inspection, transport of concrete by the truck driver, driving on a recycled concrete road, and public living near the landfilled concrete waste. Two worker exposure scenarios in the processing of concrete and two public exposure scenarios in recycling and disposal are considered; in all the scenarios, the exposure dose does not exceed the annual dose limit for each representative.

Correlation Analysis between Fatigue and Performance Shaping Factor for Alternation Worker's (Focused on the Semiconductor industry) (교대근무자의 피로와 수행영향인자 간의 상관관계 분석 (반도체 산업을 중심으로))

  • Yoon, Yong-Gu;Park, Peom
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.11a
    • /
    • pp.303-316
    • /
    • 2008
  • For the past 25 years, Korean semiconductor has experienced enormous growth to be the highest production country in the world. Semiconductor industry is very time sensitive and driven by technology and process, and requires 24-hour full operation. The environment includes many different types of equipment, utilities, different gases and toxic chemicals as well as high voltage electricity. We have performed a survey with 3-shift engineers and workers in one line. The content of the questionnaire was about the correlation between fatigue and performance shaping factor (work type and work ability), and as a result we were able to deduce the correlation, p-value and the pattern of scatter plot. The shape of the model was made of 4 blocks for fatigue, 5 blocks for work type and 5 blocks for work ability, i. e. 14 blocks in total. As a conclusion to this findings, there was a correlation between fatigue and work type and work ability specifically in semiconductor industry, and we need some effort to reduce this.

  • PDF

Data Dependency Graph : A Representation of Data Requirements for Business Process Modeling (데이터 의존성 그래프 : 비즈니스 프로세스 설계를 위한 데이터 요구사항의 표현)

  • Jang, Moo-Kyung
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.2
    • /
    • pp.231-241
    • /
    • 2011
  • Business processes are often of long duration, and include internal worker's decision making, which makes business processes to be exposed to many exceptional situations. These properties of business processes makes it difficult to guarantee successful termination of business processes at the design phase. The behavioral properties of business processes mainly depends on the data aspects of business processes. To formalize the data aspect of process modeling, this paper proposes a graph-based model, called Data Dependency Graph (DDG), constructed from dependency relationships specified between business data. The paper also defines a mechanism of describing a set of mapping rules that generates a process model semantically equivalent to a DDG, which is accomplished by allocating data dependencies to component activities.

The Impact of Fatigue on Hazard Recognition: An Objective Pilot Study

  • Ibrahim, Abdullahi;Okpala, Ifeanyi;Nnaji, Chukwuma;Namian, Mostafa;Koh, Amanda
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.450-457
    • /
    • 2022
  • The construction industry is demanding, dynamic, and complex making it difficult for workers to recognize hazards. The nature of construction tasks exposes workers to several critical risk factors, such as a high rate of exertion and fatigue. Recent studies suggest that fatigue may impact hazard recognition in the construction industry. However, most studies rely on subjective measures when assessing the relationship between physical fatigue and hazard recognition, limiting such studies' efficacy. Thus, this study examined the relationship between physical fatigue and hazard recognition using a controlled experiment. Worker fatigue levels were captured using physiological data and a subjective exertion scale. The findings confirmed that physical exertion plays a significant role in hazard recognition skills (p < 0.05). This research contributes to theory and practice by providing a process for objectively assessing the influence of physical fatigue on worker safety and providing construction professionals with some critical insight needed to improve workplace safety.

  • PDF

A Modeling Approach to Integrate Business Processes and Data Requirements (업무 프로세스와 데이터 요구사항의 통합 모델링)

  • Jang, Mu-Gyeong
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.04a
    • /
    • pp.329-338
    • /
    • 2011
  • Business processes are often of long duration, and include internal worker's decision making, which makes business processes to be exposed to many exceptional situations. These properties of business processes makes it difficult to design processes to support uncertainties from internal or external environments. The behavioral properties of business processes mainly depends on the data aspects of business processes. To formalize the data aspect of process modeling, this paper proposes a graph-based model, called Data Dependency Graph (DDG), constructed from dependency relationships specified between business data. The paper also defines a mechanism of describing a set of mapping rules that generates a process model semantically equivalent to a DDG, which is accomplished by allocating data dependencies to component activities.

  • PDF

Development of Real-time Process Management System for improving safety of Shop Floor (생산현장의 안전성 향상을 위한 실시간 공정관리 시스템 개발)

  • Lee, Seung Woo;Nam, So Jeong;Lee, Jai Kyung;Lee, Hwa Ki
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.171-178
    • /
    • 2013
  • Workers are avoiding production/manufacturing sites due to the poor working environment and concern over safety. Small and medium-sized businesses introduce new equipment to secure safety in the production site or ensure effective process management by introducing the real-time monitoring technique for existing equipment. The importance of real-time monitoring of equipment and process in the production site can also be found in the ANSI/ISA-195 model. Note, however, that most production sites still use paper-based work slip as a process management technique. Data reliability may deteriorate because information on the present condition of the production site cannot be collected/analyzed properly due to manual data writing by the worker. This paper introduces the monitoring and process management technique based on a direct facility interface to secure safety in the field by improving the poor working environment and enhance there liability and real-time characteristics of the production data. Since the data is collected from equipment in real-time directly through the SIB-based interface and PLC-based interface, problems associated with workers' manual data input are expected to be solved; safety can also be improved by enhancing workers' attention to work by minimizing workers' injuries and disruption.

Heuristic algorithm to assign job in inspection process (검사공정의 작업배분을 위한 휴리스틱 알고리즘 개발)

  • Lee, Seog-Hwan;Park, Seung-Hun
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.3
    • /
    • pp.253-265
    • /
    • 2008
  • In this paper, we developed a heuristic algorithm to assign job to workers in parallel line inspection process without sequence. Objective of assigning job in inspection process is only to assign job to workers evenly. But this objective needs much time and effort since there are many cases in assigning job and cases increase geometrically if the number of job and worker increases. In order to solve this problem, we proposed heuristic algorithm to assign job to workers evenly. Experiments of assigning job are performed to evaluate performance of this heuristic algorithm. The result shows that heuristic algorithm can find the optimal solution to assign job to workers evenly in many type of cases. Especially, in case there are more than two optimal solutions, this heuristic algorithm can find the optimal solution with 98% accuracy.

A Study on Development of Safety Shell Molds for Precision Machining of Sand Mold Casting Product (사형제품 기계가공을 위한 안전금형 개발에 관한 연구)

  • Choi, Jae-Hoon;Nam, Seung-Done
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.179-184
    • /
    • 2013
  • An accident from machine work is often fatal to the worker. This accident is mostly preventable through perfect process jig. In case of this machine work, however, the disaster frequently occurred because of the design which is not considered the beginning of product design, post-process and mass process of production. As for sand casting method, this has the merits of the production; the product is easily produced by manual labor. On the other hand, this method has the demerits of a bigger dimensional error contrary to other mass process of production. When the sand casting product is in machine work, there are various problems such as unsafe fix and excessive cutting, product desorption and rapid life depreciation of equipment and tools. Considering the characteristics of sand casting method, it is accepted as difficulty to improve the problems. In this study, it suggests shell mold method for mold instead of the machine work after the sand casting of the circle shape container product. And the surface accomplishes the following average of surface roughness Ra$9.94{\mu}m$ of machine work with the casting of flask mold by shell mold method. In accordance with the simplification of processing process and reducing the average thickness variation by mass production of product with detailed appearance, it has a good influence on safety accident prevention caused by production and damaged product. It is confirmed that making higher degree of size precision of all machine work product is possible to increase the safety and productivity, reduce the processing process and improve environment.