• Title/Summary/Keyword: problem solving instruction

Search Result 299, Processing Time 0.023 seconds

The Effects of Simulation Delivery Instruction on Students' Problem Solving Performance and Motivation (컴퓨터 시뮬레이션 활용 수업이 학습자의 문제 해결력과 동기에 미치는 영향)

  • Lee, Youngmin
    • The Journal of Korean Association of Computer Education
    • /
    • v.8 no.5
    • /
    • pp.43-50
    • /
    • 2005
  • The purpose of the study was to compare the effects of two instructional methods, which were the instructor-led instruction and the simulation delivery instruction on students' well-structured and ill-structured problem solving performance and motivation. 29 undergraduate students participated in the study and repeated measure design was used. We found significant difference of means in ill-structured problem solving performance and only relevance scale in motivation.

  • PDF

The Influences of Computer-Assisted Instruction Emphasizing the Particulate Nature of Matter and Problem-Solving Strategy on High School Students' Learning in Chemistry (물질의 입자성과 문제 해결 전략을 강조한 컴퓨터 보조 수업이 고등학생들의 화학 학습에 미치는 효과)

  • Noh, Tae-Hee;Kim, Chang-Min;Cha, Jeong-Ho;Jeon, Kyung-Moon
    • Journal of The Korean Association For Science Education
    • /
    • v.18 no.3
    • /
    • pp.337-345
    • /
    • 1998
  • This study examined the influences of computer-assisted instruction(CAl) upon high school students' conceptual understanding, algorithmic problem solving ability, learning motivation, and attitudes toward chemistry instruction. CAl programs were designed to supply animated molecular motions for emphasizing the particulate dynamic nature of matter and immediate feedbacks according to students' response types at each stage of four stage problem-solving strategy(understanding, planning, solving, and reviewing). The CAl and control groups (2 classes) were selected from a girls high school in Seoul, and taught about gas law for four class hours. Data analysis indicated that the students at the CAl group scored significantly higher than those at the control group in the tests on conceptual understanding and algorithmic problem solving ability. In addition, the students at the CAl group performed significantly better in the tests on the learning motivation and attitudes toward chemistry instruction.

  • PDF

Development of STEAM Instructional Materials using Arduino for Creative Engineering Design Class in High Schools and Its Application (일반계고의 창의공학설계 수업을 위한 아두이노 기반 STEAM 수업자료 개발과 적용)

  • Lee, Dae-Seok;Lim, Yeong-Dae;Kim, Jinsoo
    • Journal of Engineering Education Research
    • /
    • v.23 no.1
    • /
    • pp.3-9
    • /
    • 2020
  • The purpose of the study was to develop the Arduino based STEAM instruction materials for creative engineering design class. PDIE model was used in this study. We developed a STEAM lesson plan and a STEAM lesson worksheet for a total of six sessions through the steps of preparation, development, implementation and evaluation. The validity of the instruction materials was evaluated by the 10 experts using a survey. The instruction materials were applied to the class (52 students attended) of the creative engineering designs unit in technology and home economics subject. The class satisfaction and the creative solving-problem ability were examined after the calss. The class satafacition was high as the average of 10 item was 4.57 (out of 5). The paired t-test was conducted to compare the means of the creative solving-problem ability. It was observed that 'understanding and mastery of knowledge, thought, function and skills in a specific domain', 'divergent thinking', 'critical and logical thinking' and ' motivational factors' were significantly increased after the class. The instruction materials develped in this study were successfully designed to enhance the creative solving-problem ability by designing creative tasks and to intrique the interest by adding visual and auditory stimuli with the Arduino.

Development and Application of the CPS Instructional Program for the Astronomy Section of Highschool Science (고등학교 과학 천문분야의 CPS수업프로그램 개발 및 적용)

  • Shin, Seon-Young;Kim, Soon-Shik;Choi, Gwang-Sun;Choi, Sung-Bong
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.4 no.2
    • /
    • pp.108-115
    • /
    • 2011
  • The purpose of this study was to develop and apply a creative problem-solving(CPS) program of instruction for earth science. After the earth science sections of high school science textbooks were analyzed, a theme of instruction was selected from the first-year unit 'the origin and evolution of the universe', and a CPS model of instruction. 32 high school sophomores and juniors who were the members of an astronomy club in the city of Gimhae, South Gyeongsang Province, participated in the program, and they took a test in scientific creative problem-solving skills before and after the experiment to grasp the effect of the program on their creative problem-solving skills. Besides, a survey was conducted to find out their awareness of the program. As a result of implementing the CPS program based on the CPS model of instructional for the unit 'the origin and evolution of the universe', the program turned out effective at boosting the scientific creative problem-solving skills of the students. To be specific, they made a significant progress in validity and scientificity, but that's not the case for elaboration and originality. When their awareness of the CPS program was checked, they expected the program to spark their interest in astronomy and be beneficial to the improvement of their creative problem-solving skills, but they didn't rate group activities high on the ground that the group activities weren't performed smoothly. The findings of the study suggest that the CPS instructional program for the unit 'the origin and evolution of the universe' based on the CPS model of instruction had a good effect on the improvement of the scientific creative problem-solving skills of the students.

A Study on the Analysis of Environmental Problem Solving Process on the Elementary School Social Studies and Development of Instruction Model - Focus on the Environmental Justice - (초등학교 사회과의 환경 문제 해결과정 분석 및 수업 모형 개발 연구 - 환경 정의 개념을 중심으로 -)

  • Jang, Ho-Chang;Nam, Young-Sook
    • Hwankyungkyoyuk
    • /
    • v.20 no.4
    • /
    • pp.84-96
    • /
    • 2007
  • The purpose of this study is to develop instruction model of environmental problem process focused with environmental justice. This study has analyzed environmental problem solution process in social studies of elementary school from 4th grade to 6th grade with it. The results of this study are as follows. First, social studies of elementary school didn't show distributive justice in environmental problem solving process. Second, procedural justice existed, but offered information is lacking to each main group. Third, substantive justice was emphasized personal viewpoint. We developed instruction model of environmental problem solving process based upon the results. Component of instruction model is problem analysis, distributive justice, procedural justice, substantive justice and evaluating a solution. Timely, teachers can use and can apply it in social studies class. In conclusion, it is strongly recommend to teach environmental education linked with environmental justice. It enables us enhance a new awareness and attitudes towards sustainable development.

  • PDF

The Effect of Anchored Instruction on Elementary School Students' Problem-solving in Algorithm Learning (앵커드 수업을 통한 알고리즘 학습이 초등학생의 문제해결력에 미치는 영향)

  • Choi, Seo-Kyung;Kim, Yung-Sik
    • The Journal of Korean Association of Computer Education
    • /
    • v.15 no.3
    • /
    • pp.1-10
    • /
    • 2012
  • The flow of computer education in modern knowledge and information society contains the computer science courses to cultivate the higher-level thinking abilities such as logical thinking skills, creativity, and problem-solving ability of learners. The purpose of this study is to recognize the need to promote the algorithmic thinking power to improve the problem solving ability of learners, to design the algorithm class based on the anchored instruction strategy for elementary school students and to verify the effectiveness. Anchored instruction model and cases are added to the class. Elementary school students were subjects and divided into a control group in which the traditional algorithm teaching method was conducted and an experimental group in which algorithm class was conducted applying anchored instruction. As results, an experimental group has shown improvements on problem solving compared to a control group.

  • PDF

A Case Study on the Metacognition of Mathematically Gifted Elementary Students in Problem-Solving Process (초등 수학영재들이 수학문제 해결과정에서 보이는 메타인지 사례 연구)

  • Han, Sang-Wook;Song, Sang-Hun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.15 no.2
    • /
    • pp.437-461
    • /
    • 2011
  • The purpose of this study was to examine the metacognition of mathematically gifted students in the problem-solving process of the given task in a bid to give some significant suggestions on the improvement of their problem-solving skills. The given task was to count the number of regular squares at the n${\times}$n geoboard. The subjects in this study were three mathematically gifted elementary students who were respectively selected from three leading gifted education institutions in our country: a community gifted class, a gifted education institution attached to the Office of Education and a university-affiliated science gifted education institution. The students who were selected from the first, second and third institutions were hereinafter called student C, student B and student A respectively. While they received three-hour instruction, a participant observation was made by this researcher, and the instruction was videotaped. The participant observation record, videotape and their worksheets were analyzed, and they were interviewed after the instruction to make a qualitative case study. The findings of the study were as follows: First, the students made use of different generalization strategies when they solved the given problem. Second, there were specific metacognitive elements in each stage of their problem-solving process. Third, there was a mutually influential interaction among every area of metacognition in the problem-solving process. Fourth, which metacognitive components impacted on their success or failure of problem solving was ascertained.

  • PDF

A Study on the Change of Learning Satisfaction and Comprehension of Team Project Instruction Using Creative Capstone Design (창의적 캡스톤 디자인을 활용한 팀 프로젝트수업 운영에 따른 학습만족도 및 이해도 변화에 관한 연구)

  • Kim, Changhee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.4
    • /
    • pp.179-191
    • /
    • 2017
  • The purpose of this study is to investigate the change of comprehension degree about learning satisfaction and capstone class by applying the subject which draws idea for team project task in college to creative capstone design program. The Capstone Design Program is designed to train fieldworkers with creative problem solving skills and is widely applied as a problem-solving course in team-based projects. In this paper, based on the case study of the 'fusion capstone design' operated in the first semester of 2015 ~ 2017, the capstone design course was established in the course of designing ideas for problem solving. The results of this study are as follows: First, the questionnaire about capstone design instruction process, instruction method, and learning achievement satisfaction were analyzed. As a result, understanding of capstone design was found to be higher than that of class before class, and satisfaction of performance course, method of teaching performance and learning outcome were obtained.

Enhancing Geometry and Measurement Learning Experiences through Rigorous Problem Solving and Equitable Instruction

  • Seshaiyer, Padmanabhan;Suh, Jennifer
    • Research in Mathematical Education
    • /
    • v.25 no.3
    • /
    • pp.201-225
    • /
    • 2022
  • This paper details case study vignettes that focus on enhancing the teaching and learning of geometry and measurement in the elementary grades with attention to pedagogical practices for teaching through problem solving with rigor and centering equitable teaching practices. Rigor is a matter of equity and opportunity (Dana Center, 2019). Rigor matters for each and every student and yet research indicates historically disadvantaged and underserved groups have more of an opportunity gap when it comes to rigorous mathematics instruction (NCTM, 2020). Along with providing a conceptual framework that focuses on the importance of equitable instruction, our study unpacks ways teachers can leverage their deep understanding of geometry and measurement learning trajectories to amplify the mathematics through rigorous problems using multiple approaches including learning by doing, challenged-based and mathematical modeling instruction. Through these vignettes, we provide examples of tasks taught through rigorous problem solving approaches that support conceptual teaching and learning of geometry and measurement. Specifically, each of the three vignettes presented includes a task that was implemented in an elementary classroom and a vertically articulated task that engaged teachers in a professional learning workshop. By beginning with elementary tasks to more sophisticated concepts in higher grades, we demonstrate how vertically articulating a deeper understanding of the learning trajectory in geometric thinking can add to the rigor of the mathematics.

The Analysis of Mathematical Abilities and Mathematization in the Mathematising Experience Instruction for Elementary Students (수학화 경험 수업에서 나타난 초등학생의 수학적 능력 및 수학화 분석)

  • Kim Yoon-Jin;Kim Min-Kyeong
    • The Mathematical Education
    • /
    • v.45 no.3 s.114
    • /
    • pp.345-365
    • /
    • 2006
  • This study, to effectively teach the concepts, principles and problem solving ability of the 2nd graders' learning of numbers and operations, offers realistic problem situation and focuses on the learning based on 'mathematization', one of the most important principles of RME (Realistic Mathematics Education) which is the mathematics education trend of Netherlands influenced by Freudenthal's theory. The instruction is applied to forty-one students of the 2nd grader for six weeks in twelve series in an elementary school, located in Seoul. To investigate the effects of the mathematising experience instruction for improving mathematical abilities, the group takes tests before and after the instruction. Also the qualitative analysis on the students' mathematising aspects through students' output at the instruction process is taken into account to evaluate the instruction's effects. The result shows that the mathematising experience instruction for improving mathematical abilities is proved to improve students' understanding of mathematical concepts and principles and their problem solving ability in learning numbers and operations after carrying out this instruction. Also the result indicates that students' mathematising aspects are mostly horizontal and vertical mathematization.

  • PDF