• Title/Summary/Keyword: probiotic feed

Search Result 154, Processing Time 0.03 seconds

Microencapsulation of Lactobacillus plantarum MB001 and its probiotic effect on growth performance, cecal microbiome and gut integrity of broiler chickens in a tropical climate

  • Sasi Vimon;Kris Angkanaporn;Chackrit Nuengjamnong
    • Animal Bioscience
    • /
    • v.36 no.8
    • /
    • pp.1252-1262
    • /
    • 2023
  • Objective: Microencapsulation technologies have been developed and successfully applied to protect the probiotic bacterial cells damaged by environmental exposure. This study aimed to investigate the effects of microencapsulation of Lactobacillus plantarum MB001 on the growth performance, ileal nutrient digestibility, jejunal histomorphology and cecal microbiome of broiler chickens in a tropical climate. Methods: A total of 288 one-day-old female broilers (Ross 308) were randomly allocated into 4 groups (6 replicates of 12 birds). Treatments included, i) a basal diet (NC), ii) NC + avilamycin (10 mg/kg) (PC), iii) NC + non-encapsulated L. plantarum MB001 (1×108 colony-forming unit [CFU]/kg of diet) (N-LP), iv) NC + microencapsulated L. plantarum MB001 (1×108 CFU/kg of diet) (ME-LP). Results: Dietary supplementation of ME-LP improved average daily gain, and feed conversion ratio of broilers throughout the 42-d trial period (p<0.05), whereas ME-LP did not affect average daily feed intake compared with NC group. Both N-LP and ME-LP improved apparent ileal digestibility of crude protein and ether extract compared with NC group (p<0.05). The broilers fed ME-LP supplemented diet exhibited a beneficial effect on jejunal histomorphology of villus height (VH), crypt depth (CD) and villus height to crypt depth ratio (VH:CD) of broilers compared to NC group (p<0.05). At the phylum level, Firmicutes was enriched (p<0.05) and Proteobacteria was decreased (p<0.05) only in the ME-LP group. At the genus level, the ME-LP diets increased (p<0.05) the number of both Lactobacillus and Enterococcus compared to NC, PC, and N-LP groups (p<0.05). Conclusion: Microencapsulation assists the efficient functioning of probiotics. ME-LP could be potentially used as a feed additive for improvement of cecal microbiota, gut integrity and nutrient utilization, leading to better performance of broilers.

Assessment of lactic acid bacteria isolated from the chicken digestive tract for potential use as poultry probiotics

  • Merisa Sirisopapong;Takeshi Shimosato;Supattra Okrathok;Sutisa Khempaka
    • Animal Bioscience
    • /
    • v.36 no.8
    • /
    • pp.1209-1220
    • /
    • 2023
  • Objective: The use of probiotics as an alternative to antibiotics in animal feed has received considerable attention in recent decades. Lactic acid bacteria (LAB) have remarkable functional properties promoting host health and are major microorganisms for probiotic purposes. The aim of this study was to characterize LAB strains of the chicken digestive tract and to determine their functional properties for further use as potential probiotics in poultry. Methods: A total of 2,000 colonies were isolated from the ileum and cecal contents of the chickens based on their phenotypic profiles and followed by a preliminary detection for acid and bile tolerance. The selected 200 LAB isolates with exhibited well-tolerance in acid and bile conditions were then identified by sequencing the 16S rDNA gene, followed by acid and bile tolerance, antimicrobial activity, adhesion to epithelial cells and additional characteristics on the removal of cholesterol. Then, the two probiotic strains (L. ingluviei and L. salivarious) which showed the greatest advantage in vitro testing were selected to assess their efficacy in broiler chickens. Results: It was found that 200 LAB isolates that complied with all measurement criteria belonged to five strains, including L. acidophilus (63 colonies), L. ingluviei (2 colonies), L. reuteri (58 colonies), L. salivarius (72 colonies), and L. saerimneri (5 colonies). We found that the L. ingluviei and L. salivarius can increase the population of LAB and Bifidobacterium spp. while reducing Enterobacteria spp. and Escherichia coli in the cecal content of chickens. Additionally, increased concentrations of valeric acid and short chain fatty acids were also observed. Conclusion: This study indicates that all five Lactobacillus strains isolated from gut contents of chickens are safe and possess probiotic properties, especially L. ingluviei and L. salivarius. Future studies should evaluate the potential for growth improvement in broilers.

Effect of Spirulina platensis and Probiotics as Feed Additives on Growth of Shrimp Fenneropenaeus chinensis

  • Kim Choong-Jae;Yoon Sook-Kyung;Kim Hong-Ik;Park Yong-Ha;Oh Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1248-1254
    • /
    • 2006
  • The effect of Spirulina platens is and probiotics as feed additives on the growth of the shrimp Fenneropenaeus chinensis was investigated in comparison with a control. The shrimp were cultured in rearing tanks in a seawater pond for 35 days from September 1, 2004. As regards the water quality, the probiotic treatment (T2, commercial diet and 3% probiotics) produced a lower TDN (total dissolved nitrogen) and TDP (total dissolved phosphorus), making it effective in water quality improvement. Nonetheless, the phytoplankton flora succeeded from diatoms to cyanobacteria, regardless of the feed additives. Treatment T3, including 3% S. platensis, produced the highest mean body weight, which was 39% higher than that for all the other treatments (P<0.05). Accordingly, it was found that the use of Spirulina and probiotics as feed additives increased the shrimp body weight and improved the water quality, respectively.

Effects of Dietary Probiotic Mixture on Growth Performance, Caecal Microorganism and Immune Response in Broiler Chickens under Heat Stress (혼합 생균제가 열 스트레스에 노출된 브로일러의 면역반응, 맹장 미생물과 성장능력에 미치는 효과)

  • Song, Young-Han;Goh, Yong Gyun;Um, Kyung-Hwan;Park, Byung-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.807-815
    • /
    • 2018
  • This study was investigated the effect of dietary probiotic mixture on blood biomarkers, immune responses, caecal microorganism and productivity in broiler chickens under heat stress (HS). A total of 400 broiler chick males (Ross 308) were divided into four groups of 100 heads each, group C (control, room temperature $25^{\circ}C$), HS (heat stress $33^{\circ}C$) and HSP (HS plus probiotic mixture 500, 750 mg/kg of diet), respectively. Broiler body weight gain, feed intake, feed conversion ratio and immune organ weight increased in the HSP group compared to the HS group. The concentrations of blood IgG and lymphocyte were increased in the HSP group compared to the HS group, and the heterophil:lymphocyte (H:L) ratio, corticosterone concentration and mortality were low. Lactobacillus in the cecum increased in the HSP group compared to the HS group, but was lower in Escherichiacoli (E. coli), coliform bacteria and aerobic bacteria. These results indicate that feeding probitic mixture including three strains such as B. subtilis, S. galilaeus and Sphingobacteriaceae to broiler exposed to heat stress can improve production with lowering mortality by improving immune response and microbial balance.

Viability of Probiotics in Feed under High Temperature Conditions and Their Growth Inhibitory Effect on Contaminant Microbes (고온 조건에서 사료 내 생균제의 생존성 및 오염미생물의 생장 억제 효과)

  • Kim, Gyeom-Heon;Yi, Kwon-Jung;Lee, Ah-Ran;Jang, In-Hwan;Song, In-Geun;Kim, Dong-Woon;Kim, Soo-Ki
    • Korean Journal of Microbiology
    • /
    • v.50 no.4
    • /
    • pp.345-350
    • /
    • 2014
  • The aim of this study was to investigate the effect of high temperature on the viability of probiotic organisms (Bacillus subtilis, Lactobacillus plantarum, and Saccharomyces cerevisiae) mixed with animal feed under controlled conditions by simulating a farm feed bin in the summer. Following inoculation of probiotics into the feed, the pH and probiotic viability were monitored during an 8-day incubation at room temperature. Sterile and non-sterile feeds displayed different patterns of pH changes, with increased pH in non-sterile feed at 2 days, but a pattern of decreasing pH at 4 days. The viabilities of S. cerevisiae and B. subtilis after mono/co-inoculation were maintained without substantial changes during the incubation, whereas L. plantarum viability tended to decline. In both non-sterile and sterile feeds, the probiotics were maintained or grew without any antagonistic effects. Probiotic viability was also tested upon a shift to high temperature ($60^{\circ}C$). There was no distinct change in pH between sterile and non-sterile feeds after the temperature shift. L. plantarum and S. cerevisiae could not survive at the high temperature, whereas B. subtilis displayed normal growth, and it inhibited the growth of contaminant microbes. Fungal growth was not observed in non-sterile feed 2 days after supplementation with B. subtilis. Therefore, heat resistant B. subtilis could be safely used in feed bins to inhibit microbial contamination, even at high temperatures. The prevention of elevated temperature in feed bins is necessary for the utilization of L. plantarum and S. cerevisiae during the summer season.

Growth performance, nutrients digestibility, and blood metabolites of lambs fed diets supplemented with probiotics during pre- and post-weaning period

  • Saleem, A.M.;Zanouny, A.I.;Singer, A.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.523-530
    • /
    • 2017
  • Objective: Two experiments were conducted to evaluate the effects on growth performance, digestibility, and blood metabolites of lambs during pre- and post-weaning period of inclusion of a commercial probiotic (PRO) containing a mixture of two strains of Pediococcus, Pediococcus acidilactici ($1{\times}10^6$ colony-forming unit [cfu]/g) and Pediococcus pentosaceus ($1.3{\times}10^6cfu/g$), with dextrose as the carrier compound compared to a diet based on concentrate mixture and wheat straw. Methods: In exp. 1, 24 male lambs of about $15{\pm}2.6$ d age and initial body weight (BW) of $5.52{\pm}0.6kg$ were randomly allocated into three groups. One group received control diet without additives, and remainders received control diet supplemented with 0.5 or 1 g PRO/lamb/d. Daily feed intake and biweekly BW were recorded. In exp. 2, five lambs, (initial $BW=29.72{\pm}1.15kg$, $age=6.54{\pm}0.32mo$) were used as experimental animals in a digestion trial. They were fed the same diets as in Exp. 1. Results: The supplementation of PRO did not result in any significant differences in milk intake, average daily gain (ADG), or total gain between treatments during the pre-weaning period. Total dry matter intake tended to be greater (p = 0.07) with addition of PRO in the post-weaning diets. During post-weaning phase, the final BW, ADG, total gain, and feed conversion ratio of the lambs receiving PRO treatments tended to be greater ($p{\leq}0.10$) than the control group. Addition of PRO in post-weaning diet decreased ($p{\leq}0.01$) blood urea and cholesterol concentrations. With the exception of ether extract digestibility, all nutrients digestibility were improved with inclusion PRO in the post-weaning diets. Conclusion: Lambs that received PRO in post-weaning diet appeared to show a better performance than lambs in pre-weaning period. Addition of the probiotic in the post-weaning diet trended towards improved dry matter intake, growth performance, feed conversion ratio, and nutrients digestibility.

Effects of Probiotic Supplementation on Growth Performance, Blood Metabolites, and Meat Quality of Hanwoo Steer (혼합 생균제 급여가 거세한우의 성장, 혈액성상 및 육질에 미치는 영향)

  • Paradhipta, Dimas H.V.;Jeon, Chung-Hwan;Choi, In-Hag;Lee, Hyuk-Jun;Joo, Young-Ho;Lee, Sung-Shin;Kim, Dong-Hyeon;Kim, Sam-Churl
    • Journal of Environmental Science International
    • /
    • v.26 no.8
    • /
    • pp.967-976
    • /
    • 2017
  • In this study, the effect of probiotic supplementation on growth performance, blood metabolites, and meat quality of Hanwoo steer was investigated. A total of 32 Hanwoo steers (15-17 months, average body weight $462{\pm}37.9kg$) were randomly allotted to 4 dietary treatments (0, 0.5, 1.0, and 1.5% mixed probiotics), with four Hanwoo steers per pen (two replicates per treatments), and reared for 12 months. There were no differences among treatments in growth performance of Hanwoo steer (P>0.05); however, feed intake decreased linearly with increasing levels of mixed probiotics. Growth hormone and Blood Urea Nitrogen (BUN) levels responded linearly with increasing levels of dietary mixed probiotics (P<0.05), but not insulin and blood glucose did not. In particular, total cholesterol was significantly lower for the 1% mixed probiotic treatment in comparison with that of the other treatments (P<0.05). The pH, Thiobarbituric Acid Reactive Substances (TBARS), cooking loss, and meat color were influenced by increasing levels of mixed probiotics (P<0.05), but the carcass characteristics and shear force were not. Regarding sensory evaluation, the addition of mixed probiotics resulted in significant difference in meat color, tenderness, aroma, off-flavor, juiciness, and marbling score, but not in overall acceptability. In addition, fatty acid profiles indicated no differences between control and mixed probiotic treatments. In conclusion, mixed probiotic treatment at 1% levels can enhance consumer preferences possibly by reducing cholesterol and TBARS.

INFLUENCE OF DRIED Sacillus subtilis AND LACTOBACILLI CULTURES ON INTESTINAL MICROFLORA AND PERFORMANCE IN BROILERS

  • Jin, L.Z.;Ho, Y.W.;Abdullah, N.;Jalaudin, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.4
    • /
    • pp.397-403
    • /
    • 1996
  • Two hundred 10-day-lid, male Arbor Acres broiler chicks divided randomly into 4 groups of 50 chicks each were used. Different feeding treatment was carried out for each group. Chicks in treatment 1 were fed a basal diet(Starter feed)(control); treatment 2, a basal diet + 0.1% B. subtilis culture; treatment 3, a basal diet + 0.2% lactobacilli culture in the feed; and treatment 4, a basal diet + 5 g lactobacilli in the drinking water. The viable bacterial counts for each treatment were approximately $10^9cells/kg$ feed. The weight gain in chickens given feeds incorporated with B. subtilis and lactobacilli was significantly(p < 0.05) higher than those of the control. With regard to feed efficiency, there was a definite tendency towards a higher feed : gain lower(p < 0.05) feed : gain ratio. A significantly(p < 0.05) larger population of Lactobacillus was found in the small intestine of chickens fed with feed incorporated with B. subtilis at 21 and 28 days and with lactobacilli at 14, 21 and 28 days. Populations of intestinal E. coli in broilers given feed added with B. subtilis were not significantly(p < 0.05) different from those of the control, but in chickens fed lactobacilli-added feed, their populations wee significantly lower(p < 0.05) at 14 and 21 days. No significant differences were found among the treatments and the control in the occurrence of Salmonella and Campylobacter during the whole experimental period.

Efficacy of Lactic Acid Bacteria Isolated from Kimchi for Swine Feed Additives (양돈사료 첨가용 김치 유산균의 효능)

  • Cho, Mee-Sun;Han, Sun-Kyung;Ryu, Ji-Sook;Choi, Ji-Hyun;Koo, Bon-Chul;Shin, Myeong-Su;Ahn, Jong-Seog;Lee, Wan-Kyu
    • Journal of Veterinary Clinics
    • /
    • v.25 no.2
    • /
    • pp.67-72
    • /
    • 2008
  • The aim of this study was to investigate the efficacy of Lactobacillus spp. W44 and J124 strain isolated from Kimchi on the growth rate, average daily gain (ADG), feed conversion and change of intestine microflora in the weaning piglets. In the experiment 1, growth rate was significantly increased to $28.5\;{\pm}\;4.3\;kg$ and $27.6\;{\pm}\;3.3\;kg$ after oral administration of W44 and J124 strain as feed additives, respectively (p<0.05). ADG and feed conversion were also significantly improved after administration during 44 experiment days (p<0.05). In the analysis of intestinal microflora, the number of Lactobacillus spp. in the experiment groups was significantly increased 100 to 1,000 times compared to those of control group. In the experiment 2, the efficacy of W44 and J124 strains on the growth rate, ADG, feed conversion and change of intestine microflora were reconfirmed significantly (p<0.05). However, there were no significant differences on feed conversion in the W44 bead and J124 bead groups. In summary, our results suggest that W-44 and J-124 stains from Kimchi have a significant effect on the weight gain and feed conversion, and it may be useful probiotic strains for the weaning piglets as feed additives.

Effects of Dietary Supplementation of a New Probiotic CS61 Culture on Performance in Broiler Chickens (새로운 생균제 CS61 배양액의 사료 내 급여가 육계의 생산성에 미치는 영향)

  • Kim, Sung-Hwan;Lee, In-Chul;Baek, Hyung-Seon;Kang, Seong-Soo;Kim, Hyoung-Chin;Yoo, Jin-Cheol;Kim, Jong-Choon
    • Journal of Life Science
    • /
    • v.22 no.3
    • /
    • pp.340-346
    • /
    • 2012
  • Bacterial resistance to antibiotics and residues of antibiotics in poultry products have encouraged the use of probiotics, prebiotic substrates, and synbiotic combinations of prebiotics and probiotics as alternative approaches to the use of antibiotics in poultry. The present study was carried out to evaluate the effect of a new probiotic CS61 culture on growth performance, feed conversion efficiency, and safety in broiler chickens, and to evaluate its value as an alternative for antibiotics used as a feed additive. Two dosages of CS61 culture (0.1% and 1%) were fed to chickens for 28 days. The results showed that terminal body weight and daily weight gain in the treatment groups increased in a dose-dependent manner when compared with the control group. Dietary supplementation with CS61 culture also improved feed conversion rate compared to the control group. There were no treatment-related toxic effects in terms of clinical findings, mortality, necropsy findings, hematology, or serum biochemistry parameters in any group tested. The nitric oxide assay showed that CS61 peptide has a dose-dependent inhibitory effect on lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells. The results of this experiment indicated that dietary supplementation of CS61 culture may improve growth performance and feed conversion efficiency in chickens through its anti-inflammatory effect.