• Title/Summary/Keyword: probability trajectory

Search Result 86, Processing Time 0.024 seconds

T-START: Time, Status and Region Aware Taxi Mobility Model for Metropolis

  • Wang, Haiquan;Lei, Shuo;Wu, Binglin;Li, Yilin;Du, Bowen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3018-3040
    • /
    • 2018
  • The mobility model is one of the most important factors that impacts the evaluation of any transportation vehicular networking protocols via simulations. However, to obtain a realistic mobility model in the dynamic urban environment is a very challenging task. Several studies extract mobility models from large-scale real data sets (mostly taxi GPS data) in recent years, but they do not consider the statuses of taxi, which is an important factor affected taxi's mobility. In this paper, we discover three simple observations related to the taxi statuses via mining of real taxi trajectories: (1) the behavior of taxi will be influenced by the statuses, (2) the macroscopic movement is related with different geographic features in corresponding status, and (3) the taxi load/drop events are varied with time period. Based on these three observations, a novel taxi mobility model (T-START) is proposed with respect to taxi statuses, geographic region and time period. The simulation results illustrate that proposed mobility model has a good approximation with reality in trajectory samples and distribution of nodes in four typical time periods.

Fault- Tolerant Tasking and Guidance of an Airborne Location Sensor Network

  • Wu, N.Eva;Guo, Yan;Huang, Kun;Ruschmann, Matthew C.;Fowler, Mark L.
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.351-363
    • /
    • 2008
  • This paper is concerned with tasking and guidance of networked airborne sensors to achieve fault-tolerant sensing. The sensors are coordinated to locate hostile transmitters by intercepting and processing their signals. Faults occur when some sensor-carrying vehicles engaged in target location missions are lost. Faults effectively change the network architecture and therefore degrade the network performance. The first objective of the paper is to optimally allocate a finite number of sensors to targets to maximize the network life and availability. To that end allocation policies are solved from relevant Markov decision problems. The sensors allocated to a target must continue to adjust their trajectories until the estimate of the target location reaches a prescribed accuracy. The second objective of the paper is to establish a criterion for vehicle guidance for which fault-tolerant sensing is achieved by incorporating the knowledge of vehicle loss probability, and by allowing network reconfiguration in the event of loss of vehicles. Superior sensing performance in terms of location accuracy is demonstrated under the established criterion.

Defense Strategy against Multiple Anti-Ship Missiles using Anti-Air Missiles (다수 대함유도탄에 대한 함정의 대공방어유도탄 운용기법 연구)

  • Kim, Do-Wan;Yun, Joong-Sup;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.354-361
    • /
    • 2011
  • In this paper, an efficient defense strategy of single naval ship using short range anti-air missiles against the threat of multiple anti-ship missiles is suggested. The defense logic is based on the estimated future trajectory of anti-ship missiles by using current radar information. The logic is designed to maximize the range of interception of anti-ship missiles so that the chance of interception can be increased although the prior tries turn out to be fail. Basically, the decision making for the allocation of a defense missile is achieved by comparing the total kill probability and the estimated intercepting point. Performance of the proposed logic is investigated by nonlinear planar numerical simulations.

Social Pedestrian Group Detection Based on Spatiotemporal-oriented Energy for Crowd Video Understanding

  • Huang, Shaonian;Huang, Dongjun;Khuhroa, Mansoor Ahmed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3769-3789
    • /
    • 2018
  • Social pedestrian groups are the basic elements that constitute a crowd; therefore, detection of such groups is scientifically important for modeling social behavior, as well as practically useful for crowd video understanding. A social group refers to a cluster of members who tend to keep similar motion state for a sustained period of time. One of the main challenges of social group detection arises from the complex dynamic variations of crowd patterns. Therefore, most works model dynamic groups to analysis the crowd behavior, ignoring the existence of stationary groups in crowd scene. However, in this paper, we propose a novel unified framework for detecting social pedestrian groups in crowd videos, including dynamic and stationary pedestrian groups, based on spatiotemporal-oriented energy measurements. Dynamic pedestrian groups are hierarchically clustered based on energy flow similarities and trajectory motion correlations between the atomic groups extracted from principal spatiotemporal-oriented energies. Furthermore, the probability distribution of static spatiotemporal-oriented energies is modeled to detect stationary pedestrian groups. Extensive experiments on challenging datasets demonstrate that our method can achieve superior results for social pedestrian group detection and crowd video classification.

UNCERTAINTY AND SENSITIVITY STUDIES WITH THE PROBABILISTIC ACCIDENT CONSEQUENCE ASSESSMENT CODE OSCAAR

  • HOMMA TOSHIMITSU;TOMITA KENICHI;HATO SHINJI
    • Nuclear Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.245-258
    • /
    • 2005
  • This paper addresses two types of uncertainty: stochastic uncertainty and subjective uncertainty in probabilistic accident consequence assessments. The off-site consequence assessment code OSCAAR has been applied to uncertainty and sensitivity analyses on the individual risks of early fatality and latent cancer fatality in the population outside the plant boundary due to a severe accident. A new stratified meteorological sampling scheme was successfully implemented into the trajectory model for atmospheric dispersion and the statistical variability of the probability distributions of the consequence was examined. A total of 65 uncertain input parameters was considered and 128 runs of OSCAAR with 144 meteorological sequences were performed in the parameter uncertainty analysis. The study provided the range of uncertainty for the expected values of individual risks of early and latent cancer fatality close to the site. In the sensitivity analyses, the correlation/regression measures were useful for identifying those input parameters whose uncertainty makes an important contribution to the overall uncertainty for the consequence. This could provide valuable insights into areas for further research aiming at reducing the uncertainties.

Free Energy Estimation in Dissipative Particle Dynamics

  • Bang, Subin;Noh, Chanwoo;Jung, YounJoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.37-54
    • /
    • 2016
  • The methods for estimating the change of free energy in dissipative particle dynamics (DPD) are discussed on the basis of fluctuation theorems. Fluctuation theorems are tactics to evaluate free energy changes from non-equilibrium work distributions and have several forms, as proposed by Jarzynski, Crooks, and Bennett. The validity of these methods however, has been shown merely with the molecular dynamics or Langevin dynamics. In this study, the appropriate forms of fluctuation theorems for dissipative particle dynamics, which has similar structure to that of Langevin dynamics, are suggested using Liouville's theorem, and they are proved equivalent to original fluctuation theorems. Work distribution functions, which are probability distribution functions of works exerted on the system within the systematic change, are the basics of fluctuation theorems and their shapes are turned out to be dependent on the phase space trajectory of the change of the system. The reliability of Jarzynski and Crooks methods is highly dependent on the number of simulations to measure works and the shapes of the work distribution functions. Bennett method, however, can evaluate free energy changes even when Jarzynski and Crooks methods fail to do so.

  • PDF

A Study on Optimum Hybrid Post-Processing Method for Multiple Telemetry Streams (원격측정 다중 스트림 최적 혼합 후처리 기법 연구)

  • Kim, In Jong;Lee, Sungpil;Chang, Dukjin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.616-624
    • /
    • 2019
  • In order to understand flying aircraft, satellite, missile, etc, a telemetry ground system is used to receive, record, and process the transmitted radio signal from vehicles. In some cases, a line-of-sight communication is not possible along to the trajectory of vehicles, and multipath fading result in a shade area of communication. A number of telemetry ground systems are installed to overcome this limitation, and acquire the transmitted signal seamlessly. The telemetry signals received by multiple independent ground systems have independent probability of errors since they experienced their own communication channels. In other words, we can exploit the independent error characteristics of received signals by processing them in a hybrid method. The optimum hybrid post-process method is proposed in this study, and applied to process telemetry signals acquired from flight tests.

Validation of Mid Air Collision Detection Model using Aviation Safety Data (항공안전 데이터를 이용한 항공기 공중충돌위험식별 모형 검증 및 고도화)

  • Paek, Hyunjin;Park, Bae-seon;Kim, Hyewook
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.4
    • /
    • pp.37-44
    • /
    • 2021
  • In case of South Korea, the airspace which airlines can operate is extremely limited due to the military operational area located within the Incheon flight information region. As a result, safety problems such as mid-air collision between aircraft or Traffic alert and Collision Avoidance System Resolution Advisory (TCAS RA) may occur with higher probability than in wider airspace. In order to prevent such safety problems, an mid-air collision risk detection model based on Detect-And-Avoid (DAA) well clear metrics is investigated. The model calculates the risk of mid-air collision between aircraft using aircraft trajectory data. In this paper, the practical use of DAA well clear metrics based model has been validated. Aviation safety data such as aviation safety mandatory report and Automatic Dependent Surveillance Broadcast is used to measure the performance of the model. The attributes of individual aircraft track data is analyzed to correct the threshold of each parameter of the model.

High Utility Itemset Mining by Using Binary PSO Algorithm with V-shaped Transfer Function and Nonlinear Acceleration Coefficient Strategy

  • Tao, Bodong;Shin, Ok Keun;Park, Hyu Chan
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.2
    • /
    • pp.103-112
    • /
    • 2022
  • The goal of pattern mining is to identify novel patterns in a database. High utility itemset mining (HUIM) is a research direction for pattern mining. This is different from frequent itemset mining (FIM), which additionally considers the quantity and profit of the commodity. Several algorithms have been used to mine high utility itemsets (HUIs). The original BPSO algorithm lacks local search capabilities in the subsequent stage, resulting in insufficient HUIs to be mined. Compared to the transfer function used in the original PSO algorithm, the V-shaped transfer function more sufficiently reflects the probability between the velocity and position change of the particles. Considering the influence of the acceleration factor on the particle motion mode and trajectory, a nonlinear acceleration strategy was used to enhance the search ability of the particles. Experiments show that the number of mined HUIs is 73% higher than that of the original BPSO algorithm, which indicates better performance of the proposed algorithm.

An Extension of MSDL for Obtaining Weapon Effectiveness Data in a Military Simulation (국방 시뮬레이션에서 무기효과 데이터 획득을 위한 MSDL의 확장)

  • Lee, Sangjin;Oh, Hyun-Shik;Kim, Dohyung;Rhie, Ye Lim;Lee, Sunju
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • Many factors such as wind direction, wind strength, temperature, and obstacles affect a munition's trajectory. Since these factors eventually determines the probability of hit and the hitting point of a target, these factors should be considered to obtain reliable weapon effectiveness data. In this study, we propose the extension of the MSDL(Military Scenario Definition Language) to reflect these factors to improve the reliability of weapon effectiveness data. Based on the existing MSDL, which has been used to set the initial condition of a military simulation scenarios, the newly identified subelements are added in ScenarioID, Environment, Organizations, and Installations as a scenario schema. Also, DamageAssessment and DesignOfExperiments element are added to make weapon effectiveness data easily. The extended MSDL enables to automatically generate the simulation scenarios that reflect various factors which affect the probability of hit or kill. This extended MSDL is applied to an integrated simulation software of weapon systems, named AddSIM version 4.0 for generation of weapon effectiveness data.