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Abstract 
 

The mobility model is one of the most important factors that impacts the evaluation of any 
transportation vehicular networking protocols via simulations. However, to obtain a realistic 
mobility model in the dynamic urban environment is a very challenging task. Several studies 
extract mobility models from large-scale real data sets (mostly taxi GPS data) in recent years, 
but they do not consider the statuses of taxi, which is an important factor affected taxi’s 
mobility. In this paper, we discover three simple observations related to the taxi statuses via 
mining of real taxi trajectories: (1) the behavior of taxi will be influenced by the statuses, (2) 
the macroscopic movement is related with different geographic features in corresponding 
status, and (3) the taxi load/drop events are varied with time period. Based on these three 
observations, a novel taxi mobility model (T-START) is proposed with respect to taxi 
statuses, geographic region and time period. The simulation results illustrate that proposed 
mobility model has a good approximation with reality in trajectory samples and distribution 
of nodes in four typical time periods. 
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1. Introduction 

Transportation plays a critical role in building smart cities and supporting comprehensive 

urban informatics [1], and the use of Intelligent Transportation Systems is one of the key 
technologies for improving the safety, efficiency, and environmental friendliness of the 
transport industry [25], [28]. Specifically, more and more vehicles are connected to the 
Internet through vehicle-to-anything (V2X) communication technologies, changing the 
automotive industry and the transportation system [22]. Validation of mobile ad hoc network 
protocols relies almost exclusively on simulation [2], [3], [19], [21]. The value of the 
validation is, therefore, highly dependent on how realistic the mobility model (i.e., mobility 
pattern of vehicles, including speed and direction) used in the simulations are [23]. Thus, it is 
necessary to have a significant effort in increasing the realism of mobility models used by 
network simulators. In addition, realistic mobility model can be used for city planning, 
traffic control, and other important tasks of smart cities. For instance, Kong et al. [29] 
proposed a time-location-relationship (TLR) combined taxi service recommendation model 
to improve taxi drivers’ profit. 

In recent years, mobility models [4], [5], [7] have been well-studied, and these works can 
be classified into free space and constrained models based on the degree of randomness. 

For the free space scenario, the Random Way Point (RWP) model [6] is the most 
commonly used in simulations of Vehicle Network. An early study [10] shows that RWP in 
many cases is a good approximation of the vehicular mobility model based on real street 
maps. However, compared with the free space scenario, constrained mobility models [11], 
[12] are much closer to the realistic mobility by taking the geographic structure (such as the 
street layout, traffic rules, and multi-lane roads) into consideration, which will reduce the 
accuracy of simulation of Vehicle Network. Recently, there is also a new trend to extract the 
vehicular mobility model from real vehicular trace data (mainly taxi GPS trace data) [8], [13]. 
For example, Huang et al. proposed mobility models by estimating three parameters (turn 
probability, road section speed and travel pattern) from Shanghai taxi trace data [8]. 
However, all these existing constrained mobility models are too complicated to implement 
and strongly related to the simplified maps, and that will reduce the time efficiency of 
simulation. Also, the existing taxi-based mobility models ignore the statuses of taxi (vacant 
or occupied), which has an important influence on the performance of taxi mobility models. 

In this paper, we propose a Time, STAtus and Region Aware Taxi mobility model 
(T-START) from both macroscope and microscope aspects. In the macroscope, T-START 
can divide the area into two sets of regions according to the density of passenger load or drop 
events in different time periods instead of simply dividing the area into coarse-grain regions. 
When a taxi takes a passenger, the current location is selected from the set of load-event 
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regions at that time. And the destination region, where the drop event happens, is selected in 
the set of drop-event regions. For microscope, the speed of the taxi is generated based on its 
status at corresponding time, which is learned via statistical analysis. Extensive simulations 
are carried out to verify the effectiveness of T-START from three aspects: traces and node 
distributions, in/out-degree distributions and contacts characteristics. The results show that 
T-START model has a good approximation of the real scenario in trace samples. 

Our contribution can be summarized as follows. First, we find that taxis’ behaviors and 
geographic features are strongly related to the status of the taxi. In addition, time is another 
factor affecting the taxi behavior because the passenger flow volume, origins and 
destinations vary with time. Meanwhile, the demand of passengers affects the quantity of 
working taxies. We validate such claims by statistical analysis over a large-scale Beijing taxi 
trace data. Secondly, we propose T-START model based on above findings, which is much 
easier to implement and more accuracy in simulation of Vehicle Network comparing with 
other classical mobility models. Finally, we implement a prototype system based on ONE 
and the results of experiments show that our model enhances the accuracy and efficiency of 
the performance of simulation Vehicle Network. To the best of our knowledge, our work is 
original to develop mobility models by investigating taxi behaviors and geographic features 
of different statuses and time periods. 

The rest of this paper is organized as follows. Section 2 summarizes the related work. And 
Section 3 provides the statistical results from real data to validate three important 
assumptions for T-START model. Section 4 presents the detail of T-START model. 
Simulation results are reported in Section 5. Finally, Section 6 concludes this paper. 

 2. Related Work  

In this section, we summarize some reported studies about mobility models. They can be 
classified into free space and constrained models based on the degree of randomness. 

2.1 Mobility model in free space scenario 

Random Walk mobility model (RW) [24], Random Way Point mobility model (RWP) [6] 
and Random Direction mobility model (RD) [27] are three classical random mobility models. 
They establish their movements without prior knowledge and apply to the simplified mobile 
scenarios by random selection speed and direction of node movement. Among these three 
models, RWP is the most commonly used in many cases. The movement model identified a 
pause time, speed range from zero to the maximum, and movement area where the model 
select a random destination. Amit Kumar Saha el at. [10] found that RWP mobility model is 
a good approximation of the vehicular mobility model based on real street maps. Although 
these models defined simple mobility patterns, which is convenient for us to create mobility 
models and analysis, they are out of reality due to many practical factors are ignored. 
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2.2 Mobility model in constrained scenario 

Due to the weaknesses in free scenario, many studies began to consider more restricted 
condition in mobility models. Most of them are mainly devided into three parts: map-based 
mobility model, traffic simulator-based mobility model and trace-based mobility model. 
2.2.1 Map-based mobility model 

Manhattan models [9] are a typical model which models the city as a Manhattan style grid, 
with a uniform block size across the simulation area, while all streets are two-way with a 
lane in each direction which constrained car movements [11], and nodes can move straight 
forward or turn direction at a cross road. Bhattacharjee, D et al. proposed a mobility model 
with multiple features [20]. Meanwhile, A. K. Saha and D. B. Johnson [10] model the 
vehicle networks based on the real roads. It was compared with the RWP models, a 
commonly used mobility model in vehicular networks, to find out the difference between the 
RWP and real trajectories in routing performance. D. R. Choffnes et al. [12] proposed an 
integrated mobility and traffic model for vehicular wireless networks. This paper simplifies 
the real road to evaluate the network performance in ad hoc and proposes the mobility model 
STRAW. It verified the RWP can not exhibit the characteristics of urban vehicle network. 
2.2.2 Real trace-based mobility model 

Some researches focus on the microscopic characteristics of mobility. They introduce the 
transportation features into mobility, such as the traffic lights, multi-channels and 
intersections. These geographical information can make the model more available. Atulya 
Mahajan, et al. [16] accounted for the street layout, traffic rules, multilane roads, 
acceleration-deceleration, and radio frequent (RF) attenuation due to obstacles, and further 
evaluated the synthetic maps by comparing with real maps. David R. Choffnes et al.[12] 
developed their movement model based on a realistic vehicular traffic model on road defined 
by real street map data. SAME [33] is a mobility model of daily activities which is based on 
the analysis and conclusion of students' habits and customs in campus environments. In 
addtition, Huang H et al. [8] proposed mobility models based on taxi trajectory data in 
Shanghai, China. They designed three parameters : transition probability, traffic speed in 
each section and travel pattern, which can be estimated by analyzing the data statistically. 
But these models are too  complicated to re-implement this model, for the model is strongly 
related to the map they simplified from the real road. 

2.2.3 Sociological behavior-based mobility model 
In recent years, vehicular sensors or handheld devices spread rapidly, that makes it 

possible to collect and analyze the real trajectories of large amount of nodes. It helps us to 
improve the traffic and network macroscopically. Besides, Gao et al. [26] put forward a 
model based on the similarity of the user's interest. They abstracted the node's mobility 
patterns into three states, such as the main community, the other communities, and the path 
to which they are linked and then considered social relationship and the driving function of 
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the social activities of the nodes in the real life. Recently, Musolesi put forward a kind of 
community based mobility model combined with social network theory [31]. The model will 
be distributed in multiple communities in different regions according to the degree of 
closeness between nodes. Also, Social, sPatial, and Temporal mobility framework (SPoT) 
takes a social graph as input and the spatial and temporal dimensions of mobility are added 
[32]. 

3. Statistical Analysis of Taxi Traces 

In this section, we focus on the statistical analysis on the speed, duration, and taxi event 
characteristics of the Beijing taxi data set, which is a large-scale urban vehicular trace data. 

3.1 Trace Dataset: Beijing Taxi Traces 

A real-world GPS data set was used for our analysis, which was collected from Beijing taxi 
companies. After removing replicates and wrong records caused by machine error, we are 
left with about 91 million records taken by 12,455 taxis within seven days from November 1 
to November 7, 2011. In the data set, each record includes a base station ID, company name, 
taxi ID, timestamp, current location (including longitude and latitude), speed, event, status, 
et al. Besides, each taxi uploads the record in every 60 seconds. Of all the fields in the record, 
we extract the information that later study used as a tuple (taxi ID, time stamp, longitude, 
latitude, status, event). There are five types of events and four types of statuses of records in 
the data set, which are summarized in Table 1. Due to the rest of other statuses are not 
meaningful to our work, we only focus on the vacant and occupied status (corresponding 
load and drop event) in this paper. Note that GPS traces from taxis have been used recently 
for inferring human mobility [14] and modeling city-scale traffics [15]. Therefore, we 
believe that they are also suitable to be used to build mobility models in large-scale urban 
scenario. 

Table 1. Event and status in Beijing taxi traces 
Category Code Explanation 

Event 

0 (drop) a taxi’s status changes to vacant. 

1 (load) a taxi’s status changes to occupied. 

2 set up defense. 

3 cancel defense. 

4 no event happened. 

Status 

0 (vacant) a taxi is vacant. 
1 (occupied) a taxi is occupied. 

2 a taxi is setting up defense. 
3 stop running. 
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3.2 Three Claims on Taxi Behaviors 

First, we proposed three claims based on the experience in our daily life, which are 
foundations of the taxi mobility model: 
 Claim 1: The behavior of a taxi changes when its status updates. When a taxi is 

occupied, its destination is certain, and the vehicular speed of an occupied taxi 
accelerates relatively. In contrast, when a taxi is vacant, it slows down or even stops to 
search for potential passengers along the road. Therefore, taxi behavior characteristics, 
such as speed and status duration, vary consequently. 

 Claim 2: Taxi has the different behavior in different time periods. One of most intuitive 
reflections of taxi behavior is a series of consecutive trips, where the trip is extracted by 
the load/drop event. Indeed, the quantities of load/drop events may vary with time 
conforming to certain rules. For example, the quantity of passengers late in the night is 
relatively fewer than that of passengers during the daytime. The correlation between 
taxi behavior and time may be reflected to following aspects: 
1) The hotspots of load/drop events vary with time. 
2) For the same time period during a day, the load/drop events distribute similar. 

 Claim 3: The mobility behavior of taxis associates with geographic features. When a 
taxi is occupied, the destination may be tended to certain geographic places, such as the 
airport. Meanwhile, when a taxi is vacant, its driver tends to look for some hot spots, 
where more people want to take a taxi, such as downtown areas. Therefore, 
1) The destination selection of a taxi is influenced by different regions. 
2) Events occur in different regions un-evenly, passenger drop and load events are 

distinct. 
Next, we analyze the speed, duration and passenger load/drop events distribution over the 

Beijing taxi trajectories to validate the three claims above.  

3.3 Taxi Behavior Varied with Status 

The average of instantaneous speed distributions for the two statuses for different time 
periods are explored. 

 
a) Occupied status              b) Vacant status 

Fig. 1. Average of instantaneous speed of two statuses on each hour 
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We calculate the average of instantaneous speed on each hour for vacant and occupied 

status from November 1 to 7, 2011. As shown in Fig. 1, occupied taxis drives much faster 
than vacant one. And the average speed is affected by time, especially for the occupied status. 
To further investigate the cumulative speed distribution, we calculated and plotted the 
proportion for every speed section is in Fig. 2.  
 

 
a)  Vacant status     b)  Occupied status    c)  Vacant status  d)  Occupied status 

in 6:00-8:00          in 6:00-8:00          in 11:00-13:00       in 11:00-13:00 

 
e)  Vacant status     f)  Occupied status    g)  Vacant status  h)  Occupied status 

in 17:00-19:00      in 17:00-19:00      in 22:00-24:00       in 22:00-24:00 
Fig. 2. Speed distributions for vacant and occupied statuses. 

 
Specifically, the x-axis and y-axis represent the speed range of the car and the cumulative 

probability, respectively. For example, a point at (5, 0.2) presents 20% records fall in the 
speed range [0,5) km/h. We also fit the speed to model the microscope behavior (will be 
discussed in Section 4). Fig. 2 shows that speed distribution differs for each status and with 
strong regularity for each status at corresponding time. 

In Fig. 2(b), from 6:00 to 8:00, curves of Nov. 5 and Nov. 6 are different from other 
curves. This may because Nov. 5 and Nov. 6 are weekend and more workers will get up late 
at weekend. So the vehicle volume in the weekend morning will decrease so that the speed 
will increase. 
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Fig. 3. Status duration distributions. 
 

The duration distribution for each status is shown in Fig. 3. Status duration represents the 
time length of a taxi staying in a certain status. The red line presents the duration time 
distribution for vacant status, and the blue one is for occupied status. We can find that the red 
line (vacant status) approaches to 1 earlier than the blue line (occupied status). And the value 
of vacant duration is smaller than the value of occupied duration. This is reasonable since 
drivers tend to shorten the waiting time to raise their incomes.  

Overall, the statistical results for both speed and status duration are consistent with Claim 
1, that is, the behaviors of taxis are similar within each status while differ between the two 
statuses. 

3.4 Taxi Behavior Varied with Time 

In this section, we analyze the number of load (and drop) event happened on each hour. 
Table 2 presents the results that the total volumes of load and drop events for a week are 
similar, close to 2.7million. And the maximum event number is much larger than the 
minimum event number. 

From Fig. 4, we can find that the event quantity varied with time shows strong regularity 
and the curves of the load and drop events follows parallel rules. In addition, ranges of two 
types of events quantities at the same time are similar. Which is consistent with our 
experiences, due to the load and drop quantity should be in balance.  

Table 2. Events quantity varied with time 
Item drop event quantity load event quantity 

Total quantity for a week 2,679,385 2,707,290 
maximum of an hour 28,583 28,130 
minimum of an hour 861 918 

time of the peak value Nov 4, 19:00-20:00 Nov 4, 19:00-20:00 
time of the valley Nov 3, 4:00-5:00 Nov 3, 4:00-5:00 
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The analysis results validate Claim 2 and fit with our daily experience: the load event 

quantity equilibrates with the drop event quantity, and the event quantity at certain time 
presents certain regularity. 

 
Fig. 4. Two events distributions of a week. 

 

3.5 Taxi Behavior Varied with Geographic 

To capture the characteristics of events distributions with geographical preference, we divide 
regions into 200m × 200m grids, and count the load and drop events happened in each 
hour. By filtering the cells whose event quantities are lower than 5 per hour, we found that 
the load and drop events tend to happen in different places, even though the event quantities 
and time periods are similar.  

To further investigate features of event distributions, we select two days in workdays and 
weekends, respectively. Fig. 5 and Fig. 6 shows the hotspots (more than 20 events happened 
in one hour) of load/drop events at the rush hour (i.e., from 19:00 to 20:00), where each bar 
represents the number of happened events in the grid. Comparing the load and drop event 
hotspots, we can find the load event distributes much evenly than drop one. And some places 
are the hotspots of both load and drop events, as highlighted in the red circles. 

Although the amounts of events are different from the workdays and weekends, the 
position of those hotspots are still similar. Because the load-event spots are mainly at homes 
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of the residents, while the drop-event spots tend to gather at workplaces, shopping malls, 
railway stations or scenic spots. 

Overall, amounts of loading/dropping passengers in each cell shows geographic features: 
the distribution is uneven, and the difference between load/drop-event distributions 
illustrates the load/drop-event regions are different. All of these support Claim 3 we given in 
the Section 3.2. 

 
(a)  Nov.1th, Tue.      (b) Nov.3th, Thur.      (c) Nov.5th, Sat.   (d) Nov.6th, Sun. 

Fig. 5. Hotspots of load events from 19:00 to 20:00 

 
(a) Nov.1th, Tue.   (b) Nov.3th, Thur.      (c) Nov.5th, Sat.   (d) Nov.6th, Sun. 

Fig. 6. Hotspots of drop events from 19:00 to 20:00. 

4. T-START Mobility Model 

In this section, we provide technical details of modeling. Based on the features of taxis 
moving we extracted in the Section 3, we construct a Time, STAtus and Region Aware Taxi 
mobility model (T-START). There are two main tasks of T-START: destination selection 
and moving process. 

4.1 Motivation 

Movement model defines the mobility pattern of nodes, which can be represented as a 
collection of path segments denoted as 1 2: , ,..., nPaths p p p< > . Therefore, generating ip  
precisely becomes the key process of a good movement model. To generate a ip , T-START 
takes two steps: destination selection and moving process. 

Destination Selection: In T-START, Besides the influence of time, the selection of a 
node’s destination is closely related to not only its current location but also its current status. 
A travel path of a taxi can be simplified as a multi-hop process, in which a hop indicates a 
load/drop event happened. Considering that, we first divide the whole area into regions by 
the density of passenger load/drop events at different time, respectively. This step will help 
us recognize load/drop region more scientifically and reduce the calculation capacity. 
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Second, based on the region which are recognized in the last step, we define a region 
transition probability to figure out the probability of the next hop falling in a certain region 
from the current region in the specified time. Therefore, we can construct the transition 
probability matrix in the specified time to select the next hop of the node. The specific 
process will be introduced in Section 4.2. 

Moving Process: When the source location (current location) and destination location are 
selected, the next step is to find a path to connect them and simulate the speed of vehicles. 
First, although there are some approaches of dynamic path planning [30], which are very 
complicate to complement, due to main purpose of this paper is to establish a model which 
are more realistic but also much easier to complement, we adopt the Dijkstra algorithm as 
the path selection method of our model to simplify the process, which will find a shortest 
path from the source location to the destination based on the map. More specifically, this will 
not reduce the accurate of mobility model as moving features like direction and time costing 
have been already considered in extraction of taxi behaviors. Next, the speed of the path is 
assigned to speed based on current statuses. Here, the value of speed is drawn from historical 
speed distribution. Specifically, we fit the cumulative instantaneous speed distribution to get 
the cumulative probability distribution function of corresponding status, which will be 
introduced in the last subsection of this section. 

4.2 Region Transition Probability 

Due to the event distributions of load and drop events are different with each other and 

varied with time, region ,
load
i tR  and ,

drop
j tR  are recognized by different metrics, that is, drop 

or load event distribution during each time period. For instance, if the taxi is currently 
occupied, then the next hop event is the drop one. Hence, choosing a target region from a 
region set obtained based on drop event distribution is more logical. Here, we provide the 
following definitions. 
 
Definition 1. A cell Cx,y is a set of consecutive geographic points, where x,y denotes the cell 
identifier; lenx and leny are side length of the cell; lon and lat present longitude and 
latitude,respectively;  

( ), :: , | 1, 1x y
x y

lon latC lon lat x x y y
len len

  = ≤ < + ≤ < + 
  

 

Definition 2. We consider a region Rm as a union of adjacent cells, and Rm is the smallest 
unit of transition probability, where m denotes the region identifier. 

{ }, ,:: | 1, 1m i j x y mR C C R x i y j= ∃ ∈ ⇒ − ≤ − ≤      
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The main idea of clustering cells to regions is merging adjacent cells whose event density 
is larger than an event threshold η  into a same region. To avoid the size of a region become 

too large or too small, we set a limitation on the size of a region, which is  i sizeR φ≤ , and 

also the number of final regions need to be less than or equal to topφ .  

We first divide the whole area (within fourth ring roads in Beijing) into 100×100 cells, 
then sort all the cells by event density in descending order, and begin with the first cell to 
search its neighbors whether to join the same region or not using breadth traversal. After the 

top regions are formed, the other cells which do not belong to the top topφ  regions will also 

be clustered into regions, whose size should still be smaller than sizeφ . Consequently, each 

cell will be clustered into regions and the size of each region are not larger than sizeφ . 

By clustering cells into regions, two region sets, load
tR  and drop

tR , can be recognized from 

the data set. For each time period, we set different threshold by its average events number in 

each cell at that time, that is, η equals to twice the average event number. topφ  is 200 and 

sizeφ  is 500 in all time periods, and the rest parameters settings of region recognition in each 

time period are showed in Table 3. 
 

Table 3. Region recognition parameters 
Item 0:00-8:59  9:00-12:59  13:00-20:59  21:00-23:59 

dropn  56 84 180 51 

loadn  58 84 182 51 
 
One of the region recognition results for load/drop events are shown in Fig. 7, which are 

the clustering regions from 9:00 to 12:59. In this figure, every colored block presents a 
region.  
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a) load event regions      b) drop event regions 

Fig. 7. Region recognition from 9:00 to 12:59. 
 
Calculation of region transition probability: 
We propose a region transition probability to figure out the probability of the next hop 
falling in a certain region from the current region.   
Definition 3. A transition probability from a load region i to a drop region j in time t is 

denoted as
i j

t
load dropp → ; Similarly, A transition probability from a drop region j to a load 

region i in time t is denoted as 
j i

t
drop loadp → . 

Since both transition probability can be calculated similarly, we only introduce the 

detailed one of
i j

t
load dropp → . 

{ } { }
{ }

' ''

'

| ' | ' ''

| '
i j

i j

i

t t
load dropt

load drop t
load

taxi t t t t taxi t t
p

taxi t t t t
→

≤ < + ∆ <
=

≤ < + ∆

<

        (1) 

Where 
i

t
loadtaxi presents the taxi, which has the load event in region i in the time period t. 

We restrict the time from current drop event record to next load event cannot be across 
more than one hour, that is the region i belongs to the region set of time t or time t+1 and we 
ignore the records whose hour of timestamp is more than t+1 hour. For example, for t=7, the 
record with timestamp 9:00:00 is invalid, while the record whose timestamp is 8:59:59 is 
valid. 
Then we can construct a region transition probability matrix during time period t, which is 

denoted as ( )load dropP t→ . 
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( )

0 0 0 1 0

1 0 1 1 1

0 1

m

m

n n n m

t t t
load drop load drop load drop

t t t
load drop load drop load drop

load drop

t t t
load drop load drop load drop

p p p

p p p
P t

p p p

→ → →

→ → →
→

→ → →

 
 
 =  
 
 
 





   



         (2) 

4.3 Speed Distribution 

To obtain the speed distribution of each status, we fit the cumulative instantaneous speed 
distribution to get the cumulative probability distribution function, and then take a derivative 
with it to obtain the speed probability distribution. From Fig. 8, the instantaneous speed 
distribution shows exponential law except the one that is occupied status from 22:00 to 24:00. 
Considering that, we fit the speed distribution by an exponential function 1( )f x , and fit the 
cumulative speed distribution of occupied status from 22:00 to 24:00 by a linear function 

2 ( )f x , presented in Equation (3). In order to eliminate the influence caused by the weekend, 
we remove the speed distribution data such as the data of occupied status from 6:00 to 8:00, 
to generalize the fitting results. 

( ) ( )
( )

1

2

1 1/ exp bf x ax c

f x ax b

 = − − −


= +

                   (3) 

 

 
a)  Vacant status     b)  Occupied status    c)  Vacant status  d)  Occupied status 

in 6:00-8:00           in 6:00-8:00          in 11:00-13:00       in 11:00-13:00 

 
e)  Vacant status     f)  Occupied status    g)  Vacant status  h)  Occupied status 

in 17:00-19:00         in 17:00-19:00        in 22:00-24:00     in 22:00-24:00 
Fig. 8. fit result for taxi speed distribution 

 
Here, ( )if x  is the function form for the instantaneous speed distribution. The root mean 

square (rms) of residuals for each fit are reported in Table 4. The smaller rms of residuals 
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means the better fitting. In this table, the values are all less than 0.025, reflecting a good 
similarity. 

 
Table 4. Parameters and rms of residuals of fitting curves 

Time period  Vacant status  Occupied status 

06:00-08:00  0.0129207 0.0198180 
11:00-13:00  0.0086617 0.0204889 
17:00-19:00   0.0176578 0.0105868 
22:00-24:00   0.0154822 0.0240426 

5. Model Verification 

In this section, T-START mobility model is validated on the aspects of node distribution 
compared with existing mobility models and the real traces.  

5.1 Experiment Settings 

In order to confirm the effectiveness of our models, we picked the following basic simple 
mobility models for comparison:   
 Real trace: the real taxi moving trajectory data (Nov. 1, 2011 to Nov. 7, 2011). 
 Random Way Point (RWP) model: a classical mobility model is commonly used in 

simulation of as hoc. 
 Shortest Path (SP) model: a mobility model based on the underlying map of Beijing 

where vehicles move along the map roads by Dijkstra algorithm to random destinations.  
To evaluate our model from different aspects, we adopt the following three features: 
 Trace and node distribution: Trace and their node distribution snapshots are the most 

intuitive display for demonstrating the efficiency of the mobility model. 
 In-degree and out-degree: The in-degree (out-degree) figures out the number of taxies 

moving in (out) from a region during a time period. It can reflect dynamic node 
distributions and evaluate the model in the dynamic aspect [18]. 

 Contacts Characteristics: Contact is a concept used in Delay Tolerant Network (DTN), 
ad hoc networks, and can be defined as a communication opportunity. Therefore, the 
contact time and inter contact time among vehicles are also evaluated as the indicators 
to validate the similarity. 

All mobility models are implemented on Opportunistic Networking Environment (ONE) 
[17]. And other related settings are showed in Table 5. 
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Table 5. Simulation parameters of ONE 
Map size  24×24 km2 

Simulation time  2 h 
Number of vehicles 3000 

Transmit range 50 m 

Speed range 

06:00-08:00 [1.8, 31.644] km/h 
11:00-13:00 [1.8, 36.864] km/h 
17:00-19:00 [1.8, 30.492] km/h 
22:00-24:00 [0.5, 40.921] km/h 

5.2 Performance Comparison 

5.2.1. Traces and node distributions 
Trace samples and their node distribution snapshots from different mobility models are 
reported in Fig. 9 and Fig. 10. From Fig. 9 we can find that the traces of the real data and 
T-START only cover some parts of the area, while the traces of SP and RWP almost go 
through the whole area. Recall that SP and RWP select a destination randomly in the area, 
while T-START takes the associations between current region and destinations into 
consideration (which satisfies the movement rules of taxis). 

In Fig. 10, real trace, T-START and SP exhibit the road structures, while the node 
distribution of RWP is much uniform. As to T-START, the destination section process 
decides that it tends to select a destination in the regions with higher load/drop event 
probability. Therefore, with the decline of the randomness, the snapshot of T-START 
becomes much clear and centralized on the main roads, which matches real traces very well. 
 

 
(a)  Real Trace    (b) T-START      (c) SP       (d) RWP 

Fig. 9. Trace samples. 
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(a)  Real Trace  (b) T-START       (c) SP       (d) RWP 

Fig. 10. Nodes distribution snapshots.  
 

5.2.2. In-degree and out-degree 
Since the node distribution has a great impact on the transport and network performance, a 
good understanding of it can help to route and control. However, nodes are dynamic leading 
to a dynamic node distribution. In order to quantify the changing node distribution, we 
introduce the in/out degree. The in/out degree figures out how many taxies moving in or out 
from a region in a time period. In/out degree defines how many nodes moving in or out an 
area during a period of time. 

We divide the simulation scenario into grids of 400 400m m×  to investigate the in/out 
degree, and the time period to measure the in/out degree is as two hours according to the 
simulation time. Fig. 11 shows the in-degree distributions for the real trace, T-START, SP 
and RWP. 

 

(a)  Real Trace     (b) T-START        (c) SP         (d) RWP 
Fig. 11. In-degree distributions for the real trace, T-START, SP and RWP. 

 
As shown in Fig. 11, the hotspots of the real traces and T-START are concentrated on the 

main roads. As for the result of SP and RWP, both of them chose the destination in a random 
way, the difference between them is that peaks of SP gather in the central city and RWP has 
unobvious visiting hotspots. Because SP will choose the shortest way to a destination using 
the Dijkstra algorithm, while RWP choose the route randomly. 

Moreover, we adopt the error rate (ER) to measure the performance. Specifically, 

1

ˆ1
n

n i i

i i

d d
ER

d=

−
= ∑                   (4) 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018                   3035 

where ˆ
id  is the simulate value while id  is the real trace value. Table 6 shows the result of 

three models in different time period. The ER of T-START is about 0.48, while that of SP is 
about 0.65 and RWP is more than 0.8 for every time period. T-START has the best 
performance comparing with other two models in all time periods. 
 

Table 6. Performance comparison of in-degree and out-degree 

Model 
In-degree Out-degree 

06:00-08
:00 

11:00-13
:00 

17:00-19
:00 

22:00-24
:00 

06:00-08
:00  

11:00-13
:00 

17:00-19
:00 

22:00-24
:00   

TSTA
RT 

0.4927 0.4888 0.4694 0.4812 0.4952 0.4908 0.4730 0.4842 

  SP 0.6923 0.6783 0.6533 0.6840 0.6903 0.6766 0.6515 0.6821 
RWP 0.8037 0.8360 0.8382 0.8177 0.8030 0.8371 0.8380 0.8179 

 
 
5.2.3. Contacts characteristics 
The contact time and inter contact time among vehicles are also evaluated as the indicators to 
validate the similarity. Fig. 12 and Fig. 13 report the cumulative contact and inter-contact 
time distributions, respectively. In these figures, the x-axis and y-axis represent the time 
period(s) and the cumulative probability, respectively. Clearly, T-START matches the real 
traces best among three mobility models in all time periods. The performance of SP and 
RWP are similar may be caused by random destination selections. 

From contact time and inter contact time, we can find that T-START simulates actual 
trajectories better. Mainly due to it choose the destination based on the transition probability 
matrix, which is constructed from historical trip data. Although SP used the real map and the 
speed of vehicles, its characteristics of contact are restrained by random destination 
selections. 

 

 
a) 6:00-8:00             b)   11:00-13:00 
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c) 17:00-19:00    d)   22:00-24:00 

Fig. 12. Cumulative contact time distribution in different time period 

 
a) 6:00-8:00              b)   11:00-13:00 

 
c) 17:00-19:00    d)   22:00-24:00 

Fig. 13. Cumulative inter contact time distribution in different time period 

6.Conclusion 

In this paper, we proposed a new mobility model T-START based on real taxi GPS data. By 
assuming the taxi behavior is related with its statuses, time and geographic features, 
statistical experiments are conducted to demonstrate those assumptions using the real trace 
data. With carefully estimations of the speed distribution of each status for different time 
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periods and the region transition probability between drop and load event regions, T-START 
considers both macroscopic and microscopic movements. For the macroscopic movements, a 
node moves and switches between load-event regions and drop-event regions. Then the 
microscopic movements (such as the speed for each status in the corresponding time period) 
can be applied. T-START is implemented and evaluated in ONE simulator by comparing 
with the real trace, RWP and SP mobility models. For node distribution, in/out-degree and 
contact features, T-START shows better performance than the other two mobility models. 
This demonstrates that T-START has a good approximation with reality and can be used for 
urban vehicular network research and applications. 
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