• Title/Summary/Keyword: probabilistic seismic hazard

Search Result 117, Processing Time 0.018 seconds

Development of New Probabilistic Seismic Hazard Analysis and Seismic Coefficients of Korea Part II: Derivation of Probabilistic Site Coefficients (신(新) 확률론적 지진분석 및 지진계수 개발 Part II: 확률론적 지진계수 도출)

  • Kwak, Dong-Yeop;Jeong, Chang-Gyun;Lee, Hyunwoo;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.111-115
    • /
    • 2009
  • In Korea, the probabilistically developed seismic hazard maps are used with deterministically derived seismic site coefficients in developing the design response spectrum of a specific site. Even though the seismic hazard maps and seismic site coefficients are incompatible, the current design code ignores such incompatibility. If the seismic hazard map and seismic coefficients are both developed in identical probabilistic framework, such problems can be solved. Unfortunately, the available method cannot be use to derive "true" probabilistic site coefficients. This study uses the ground motion time histories, which were developed as the result of a new probabilistic seismic hazard analysis in the companion paper, as input motions in performing one-dimensional equivalent linear site response analyses, from which the uniform hazard response spectra are generated. Another important characteristic of the hazard response spectra are that the uncertainties and randomness of the ground properties are accounted for. The uniform hazard spectra are then used to derive probabilistic site coefficients. Comparison of probabilistic and deterministically site coefficients demonstrate that there is a distinct discrepancy between two coefficients.

  • PDF

Seismic probabilistic risk assessment of weir structures considering the earthquake hazard in the Korean Peninsula

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.421-427
    • /
    • 2017
  • Seismic safety evaluation of weir structure is significant considering the catastrophic economical consequence of operational disruption. In recent years, the seismic probabilistic risk assessment (SPRA) has been issued as a key area of research for the hydraulic system to mitigate and manage the risk. The aim of this paper is to assess the seismic probabilistic risk of weir structures employing the seismic hazard and the structural fragility in Korea. At the first stage, probabilistic seismic hazard analysis (PSHA) approach is performed to extract the hazard curve at the weir site using the seismic and geological data. Thereafter, the seismic fragility that defines the probability of structural collapse is evaluated by using the incremental dynamic analysis (IDA) method in accordance with the four different design limit states as failure identification criteria. Consequently, by combining the seismic hazard and fragility results, the seismic risk curves are developed that contain helpful information for risk management of hydraulic structures. The tensile stress of the mass concrete is found to be more vulnerable than other design criteria. The hazard deaggregation illustrates that moderate size and far source earthquakes are the most likely scenario for the site. In addition, the annual loss curves for two different hazard source models corresponding to design limit states are extracted.

Development of Probabilistic Site Coefficient (확률론적 지진계수 개발)

  • Kwak, Dong-Yeop;Jeong, Chang-Gyun;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.707-714
    • /
    • 2009
  • The design response spectrum generally used in Korea is decided by the site coefficients determined by deterministic methodology, while it is based on probabilistic seismic hazard analysis. The design response spectrum has to be made using probabilistic method which includes uncertainties of ground motions and ground properties for coincide with probabilistic methodology of seismic hazard analysis. In this study probabilistic site coefficients were developed, which were defined by the results of site response analysis using a set of ground motion that was compatible with present seismic hazard map. The design response spectrum defined by probabilistic seismic coefficients resulted in lower spectrum in long period area and larger spectrum in short period area. Also, the maximum spectral accelerations in site class D and site class E were lower than one in site class C while in the previous design response spectrum the maximum spectral acceleration increased from site class A to E.

  • PDF

Use of the t-Distribution to Construct Seismic Hazard Curves for Seismic Probabilistic Safety Assessments

  • Yee, Eric
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.373-379
    • /
    • 2017
  • Seismic probabilistic safety assessments are used to help understand the impact potential seismic events can have on the operation of a nuclear power plant. An important component to seismic probabilistic safety assessment is the seismic hazard curve which shows the frequency of seismic events. However, these hazard curves are estimated assuming a normal distribution of the seismic events. This may not be a strong assumption given the number of recorded events at each source-to-site distance. The use of a normal distribution makes the calculations significantly easier but may underestimate or overestimate the more rare events, which is of concern to nuclear power plants. This paper shows a preliminary exploration into the effect of using a distribution that perhaps more represents the distribution of events, such as the t-distribution to describe data. The integration of a probability distribution with potentially larger tails basically pushes the hazard curves outward, suggesting a different range of frequencies for use in seismic probabilistic safety assessments. Therefore the use of a more realistic distribution results in an increase in the frequency calculations suggesting rare events are less rare than thought in terms of seismic probabilistic safety assessment. However, the opposite was observed with the ground motion prediction equation considered.

Probabilistic Seismic Hazard Analysis of Caisson-Type Breakwaters (케이슨 방파제의 확률론적 지진재해도 평가)

  • KIM SANG-HOON;KIM DOO-KIE
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.26-32
    • /
    • 2005
  • Recent earthquakes, measuring over a magnitude of 5.0, on the eastern coast of Korea, have aroused interest in earthquake analyses and the seismic design of caisson-type breakwaters. Most earthquake analysis methods, such as equivalent static analysis, response spectrum analysis, nonlinear analysis, and capacity analysis, are deterministic and have been used for seismic design and performance evaluation of coastal structures. However, deterministic methods are difficult for reflecting on one of the most important characteristics of earthquakes, i.e. the uncertainty of earthquakes. This paper presents results of probabilistic seismic hazard assessment(PSHA) of an actual caisson-type breakwater, considering uncertainties of earthquake occurrences and soil properties. First, the seismic vulnerability of a structure and the seismic hazard of the site are evaluated, using earthquake sets and a seismic hazard map; then, the seismic risk of the structure is assessed.

Probabilistic seismic risk assessment of a masonry tower considering local site effects

  • Ozden Saygili
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.191-201
    • /
    • 2024
  • A comprehensive probabilistic seismic hazard analysis was carried out in Istanbul to examine the seismotectonic features of the region. The results showed that earthquakes can trigger one another, resulting in the grouping of earthquakes in both time and space. The hazard analysis utilized the Poisson model and a conventional integration technique to generate the hazard curve, which shows the likelihood of ground motion surpassing specific values over a given period. Additionally, the study evaluated the impact of seismic hazard on the structural integrity of an existing masonry tower by simulating its seismic response under different ground motion intensities. The study's results emphasize the importance of considering the seismotectonic characteristics of an area when assessing seismic hazard and the structural performance of buildings in seismic-prone regions.

Study on the Scenario Earthquake Determining Methods Based on the Probabilistic Seismic Hazard Analysis (확률론적 지진재해도를 이용한 시나리오 지진의 결정기법에 관한 연구)

  • Choi, In-Kil;Nakajima, Masato;Choun, Young-Sun;Yun, Kwan-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.23-29
    • /
    • 2004
  • The design earthquake used for the seismic analysis and design of NPP (Nuclear Power Plant) is determined by the deterministic or probabilistic methods. The probabilistic seismic hazard analysis(PSHA) for the nuclear power plant sites was performed for the probabilistic seismic risk assessment. The probabilistic seismic hazard analysis for the nuclear power plant site had been completed as a part of the probabilistic seismic risk assessment. The probabilistic method become a resonable method to determine the design earthquakes for NPPs. In this study, the defining method of the probability based scenario earthquake was established, and as a sample calculation, the probability based scenario earthquakes were estimated by the de-aggregation of the probabilistic seismic hazard. By using this method, it is possible to define the probability based scenario earthquakes for the seismic design and seismic safety evaluation of structures. It is necessary to develop the rational seismic source map and the attenuation equations for the development of reasonable scenario earthquakes.

PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR NUCLEAR POWER PLANTS - CURRENT PRACTICE FROM A EUROPEAN PERSPECTIVE

  • Klugel, Jens-Uwe
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1243-1254
    • /
    • 2009
  • The paper discusses the methodology and the use of probabilistic seismic hazard analysis (PSHA) for nuclear power plants from a European perspective. The increasing importance of risk-informed approaches in the nuclear oversight process observed in many countries has contributed to increasing attention to PSHA methods. Nevertheless significant differences with respect to the methodology of PSHA are observed in Europe. The paper gives an overview on actual projects and discusses the differences in the PSHA-methodology applied in different European countries. These differences are largely related to different approaches used for the treatment of uncertainties and to the use of experts. The development of a probabilistic scenario-based approach is identified as a meaningful alternative to the development of uniform hazard spectra or uniform confidence spectra.

ISSUES IN PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR NUCLEAR FACILITIES IN THE US

  • Mcguire, Robin K.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1235-1242
    • /
    • 2009
  • Probabilistic seismic hazard analysis (PSHA) is routinely conducted in the US for nuclear plants, for the determination of appropriate seismic design levels. These analyses incorporate uncertainties in earthquake characteristics in stable continental regions (where direct observations of large earthquakes are rare), in estimates of rock motions, in site effects on strong shaking, and in the damage potential of seismic shaking for engineered facilities. Performance goals related to the inelastic deformation of individual components, and related to overall seismic core damage frequency, are used to determine design levels. PSHA has the ability to quantify and document the important uncertainties that affect seismic design levels, and future work can be guided toward reducing those uncertainties.

Reevaluation of Seismic Fragility Parameters of Nuclear Power Plant Components Considering Uniform Hazard Spectrum

  • Park, In-Kil;Choun, Young-Sun;Seo, Jeong-Moon;Yun, Kwan-Hee
    • Nuclear Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.586-595
    • /
    • 2002
  • The Seismic probabilistic risk assessment (SPRA) or seismic margin assessment (SMA) have been used for the seismic safety evaluation of nuclear power plant structures and equipments. For the SPRA or SMA, the reference response spectrum should be defined. The site-specific median spectrum has been generally used for the seismic fragility analysis of structures and equipments in a Korean nuclear power plant Since the site-specific spectrum has been developed based on the peak ground motion parameter, the site-specific response spectrum does not represent the same probability of exceedance over the entire frequency range of interest. The uniform hazard spectrum is more appropriate to be used in seismic probabilistic risk assessment than the site- specific spectrum. A method for modifying the seismic fragility parameters that are calculated based on the site-specific median spectrum is described. This simple method was developed to incorporate the effects of the uniform hazard spectrum. The seismic fragility parameters of typical NPP components are modified using the uniform hazard spectrum. The modification factor is used to modify the original fragility parameters. An example uniform hazard spectrum is developed using the available seismic hazard data for the Korean nuclear power plant (NPP) site. This uniform hazard spectrum is used for the modification of fragility parameters.