• Title/Summary/Keyword: private blockchain

Search Result 115, Processing Time 0.024 seconds

A Study on the Development of Consortium Blockchain Governance Framework (컨소시엄 블록체인 거버넌스 프레임워크 개발에 관한 연구)

  • Park, Jin-Sang;Kim, Jung-Duk
    • Journal of Digital Convergence
    • /
    • v.17 no.8
    • /
    • pp.89-94
    • /
    • 2019
  • Due to the limitations of public and private blockchain, several organizations are implementing consortium blockchain systems. In order for an organization to conduct business using blockchain, it must consider 'blockchain governance' factors, such as decision rights, accountability and incentives over on-chain and off-chain, depending on the organization's strategy and objectives. If an organization conducts business without blockchain governance, it cannot achieve its strategy and objectives systematically, effectively and efficiently, and cannot comply with internal external requirements such as the expectations of stakeholders and laws. However, as businesses using consortium blockchain expand, there is no research on consortium blockchain governance. Thus, in this study, the consortium blockchain governance framework, including functions, roles and responsibilities, was developed to help organizations effectively and efficiently conduct business using consortium blockchain. In addition, to review the feasibility of the developed consortium blockchain governance framework, the framework was reviewed through an advisory committee consisting of experts on blockchain and governance over two occasions. As a result of the review, components of the consortium blockchain governance framework, including functions, roles and responsibilities, were considered complete and relevant.

BACS : An Experimental Study For Access Control System In Public Blockchain (BACS : 퍼블릭 블록체인 접근 통제 시스템에 관한 실험적 연구)

  • Han, Sejin;Lee, Sunjae;Lee, Dohyeon;Park, Sooyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.55-60
    • /
    • 2020
  • In this paper, we propose an access control system using cryptography as a method to protect personal data in public blockchain. The proposed system is designed to encrypt data according to the access policy, store it in the blockchain, and decrypt only the person who satisfy the access policy. In order to improve performance and scalability, an encryption mechanism is implemented outside the blockchain. Therefore, data access performance could be preserved while cryptographic operations executed Furthermore it can also improve the scalability by adding new access control modules while preserving the current configuration of blockchain network. The encryption scheme is based on the attribute-based encryption (ABE). However, unlike the traditional ABE, the "retention period", is incorporated into the access structure to ensure the right to be forgotten. In addition, symmetric key cryptograpic algorithms are used for the performance of ABE. We implemented the proposed system in a public blockchain and conducted the performance evaluation.

A Study on Modification of Consensus Algorithm for Blockchain Utilization in Financial Industry

  • Im, Hong-Gab
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.99-104
    • /
    • 2021
  • Blockchain technology is a distributed ledger technology that shares the ledger between multiple nodes connected to a distributed network. The data managed through the existing central server is managed through the blockchain, and the transparency, accuracy, and integrity of the transaction data is increased, and the need for data management through the blockchain is increasing. In this paper, recognizing the need for trust-based data sharing between trust-based institutions in the financial industry, this paper describes the process of selecting leader nodes in Raft, a private blockchain consensus algorithm, as a way to increase data management efficiency through blockchain. A modified consensus algorithm is presented. The performance of the modified consensus algorithm and the general Raft consensus algorithm presented in this paper was compared and analyzed based on the transaction processing time, and it was confirmed that the efficiency of the consensus process was increased by applying the proposed consensus algorithm.

Integration of Blockchain and Cloud Computing in Telemedicine and Healthcare

  • Asma Albassam;Fatima Almutairi;Nouf Majoun;Reem Althukair;Zahra Alturaiki;Atta Rahman;Dania AlKhulaifi;Maqsood Mahmud
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.17-26
    • /
    • 2023
  • Blockchain technology has emerged as one of the most crucial solutions in numerous industries, including healthcare. The combination of blockchain technology and cloud computing results in improving access to high-quality telemedicine and healthcare services. In addition to developments in healthcare, the operational strategy outlined in Vision 2030 is extremely essential to the improvement of the standard of healthcare in Saudi Arabia. The purpose of this survey is to give a thorough analysis of the current state of healthcare technologies that are based on blockchain and cloud computing. We highlight some of the unanswered research questions in this rapidly expanding area and provide some context for them. Furthermore, we demonstrate how blockchain technology can completely alter the medical field and keep health records private; how medical jobs can detect the most critical, dangerous errors with blockchain industries. As it contributes to develop concerns about data manipulation and allows for a new kind of secure data storage pattern to be implemented in healthcare especially in telemedicine fields is discussed diagrammatically.

A Novel Electronic Voting Mechanism Based on Blockchain Technology

  • Chuan-Hao, Yang;Pin-Chang Su;Tai-Chang Su
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2862-2882
    • /
    • 2023
  • With the development of networking technology, it has become common to use various types of network services to replace physical ones. Among all such services, electronic voting is one example that tends to be popularized in many countries. However, due to certain concerns regarding information security, traditional paper voting mechanisms are still widely adopted in large-scale elections. This study utilizes blockchain technology to design a novel electronic voting mechanism. Relying on the transparency, decentralization, and verifiability of the blockchain, it becomes possible to remove the reliance on trusted third parties and also to enhance the level of trust of voters in the mechanism. Besides, the mechanism of blind signature with its complexity as difficult as solving an elliptic curve discrete logarithmic problem is adopted to strengthen the features related to the security of electronic voting. Last but not least, the mechanism of self-certification is incorporated to substitute the centralized certificate authority. Therefore, the voters can generate the public/private keys by themselves to mitigate the possible risks of impersonation by the certificate authority (i.e., a trusted third party). The BAN logic analysis and the investigation for several key security features are conducted to verify that such a design is sufficiently secure. Since it is expected to raise the level of trust of voters in electronic voting, extra costs for re-verifying the results due to distrust will therefore be reduced.

Market in Medical Devices of Blockchain-Based IoT and Recent Cyberattacks

  • Shih-Shuan WANG;Hung-Pu (Hong-fu) CHOU;Aleksander IZEMSKI ;Alexandru DINU;Eugen-Silviu VRAJITORU;Zsolt TOTH;Mircea BOSCOIANU
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.2
    • /
    • pp.39-44
    • /
    • 2023
  • The creativity of thesis is that the significance of cyber security challenges in blockchain. The variety of enterprises, including those in the medical market, are the targets of cyberattacks. Hospitals and clinics are only two examples of medical facilities that are easy targets for cybercriminals, along with IoT-based medical devices like pacemakers. Cyberattacks in the medical field not only put patients' lives in danger but also have the potential to expose private and sensitive information. Reviewing and looking at the present and historical flaws and vulnerabilities in the blockchain-based IoT and medical institutions' equipment is crucial as they are sensitive, relevant, and of a medical character. This study aims to investigate recent and current weaknesses in medical equipment, of blockchain-based IoT, and institutions. Medical security systems are becoming increasingly crucial in blockchain-based IoT medical devices and digital adoption more broadly. It is gaining importance as a standalone medical device. Currently the use of software in medical market is growing exponentially and many countries have already set guidelines for quality control. The achievements of the thesis are medical equipment of blockchain-based IoT no longer exist in a vacuum, thanks to technical improvements and the emergence of electronic health records (EHRs). Increased EHR use among providers, as well as the demand for integration and connection technologies to improve clinical workflow, patient care solutions, and overall hospital operations, will fuel significant growth in the blockchain-based IoT market for linked medical devices. The need for blockchain technology and IoT-based medical device to enhance their health IT infrastructure and design and development techniques will only get louder in the future. Blockchain technology will be essential in the future of cybersecurity, because blockchain technology can be significantly improved with the cybersecurity adoption of IoT devices, i.e., via remote monitoring, reducing waiting time for emergency rooms, track assets, etc. This paper sheds the light on the benefits of the blockchain-based IoT market.

Recovery Phrase Management Scheme for Public Blockchain Wallets based on OTP (공용 블록체인 지갑을 위한 OTP 기반 계정 복구 문자열 관리 체계)

  • Song, Seounghan;Kim, Suntae;Shin, Jung-Hoon;Lee, Jeong-Hyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.35-44
    • /
    • 2020
  • The growing use of public blockchain-based virtual cryptocurrency calls for secure management of blockchain account information managed through cryptocurrency wallet programs. The previously proposed wallet program has high security in terms of managing an account's private key, but low security in managing an account's recovery phrase. Therefore, in this paper, we propose a safe management system of blockchain account recovery string based on the new user authentication method using the user's mobile device information and OTP technique to overcome the problem of the existing account recovery string management method. It also conducts an analysis of the proposed blockchain account recovery string management system based on the expected behavior scenario.

Time Synchronization between IoT Devices in a Private Network using Block-Chain (블록체인을 이용한 사설망에서의 IoT 기기 간 시간 동기화)

  • Ji, Soyeong;Kim, Seungeun;Yun, Eunju;Seo, Dae-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.161-169
    • /
    • 2018
  • This study presents a time synchronization system in decentralized structure by using the blockchain, a core technology of Bitcoin introduced by Satoshi Nakamoto in 2008. In this study, Getting away from existing time synchronization system in centralized structure, A blockchain network has completely decentralized structure using public blockchain. In decentralized structure, Only certain peers among the peers that participate in a blockchain network access the NTP server. Therefore, others can synchronize time without having to go to public network. Furthermore if appropriate time synchronization cycles are established for each peer, time synchronization can be maintained even when connection to public network is completely lost. A time synchronization system in this study has advantages of p2p system and can be also guaranteed reliability and stability because it used digital signature, merkle tree, consensus algorithm which are core characteristics of block chains.

Design and Implementation of Machine Learning-based Blockchain DApp System (머신러닝 기반 블록체인 DApp 시스템 설계 및 구현)

  • Lee, Hyung-Woo;Lee, HanSeong
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.4
    • /
    • pp.65-72
    • /
    • 2020
  • In this paper, we developed a web-based DApp system based on a private blockchain by applying machine learning techniques to automatically identify Android malicious apps that are continuously increasing rapidly. The optimal machine learning model that provides 96.2587% accuracy for Android malicious app identification was selected to the authorized experimental data, and automatic identification results for Android malicious apps were recorded/managed in the Hyperledger Fabric blockchain system. In addition, a web-based DApp system was developed so that users who have been granted the proper authority can use the blockchain system. Therefore, it is possible to further improve the security in the Android mobile app usage environment through the development of the machine learning-based Android malicious app identification block chain DApp system presented. In the future, it is expected to be able to develop enhanced security services that combine machine learning and blockchain for general-purpose data.

Blockchain-based lightweight consensus algorithm (L-PBFT) for building trust networks in IoT environment (IoT 환경에서 신뢰 네트워크 구축을 위한 블록체인 기반의 경량 합의 알고리즘(L-PBFT))

  • Park, Jung-Oh
    • Journal of Industrial Convergence
    • /
    • v.20 no.6
    • /
    • pp.37-45
    • /
    • 2022
  • With the development of the Internet of Things (IoT), related network infrastructures require new technologies to protect against threats such as external hacking. This study proposes an L-PBFT consensus algorithm that can protect IoT networks based on a blockchain consensus algorithm. We designed a blockchain (private) model suitable for small networks, tested processing performance for ultra-small/low-power IoT devices, and verified stability. As a result of performance analysis, L-PBFT proved that at least the number of nodes complies with the operation of the consensus algorithm(minimum 14%, maximum 29%) and establishes a trust network(separation of secure channels) different from existing security protocols. This study is a 4th industry convergence research and will be a foundation technology that will help develop IoT device security products in the future.