• 제목/요약/키워드: principle of virtual displacement

Search Result 99, Processing Time 0.023 seconds

Spatial Free Vibration and Stability Analysis of Thin-Walled Arches with Variable Curvature (곡률이 변하는 박벽 아치의 3차원 자유진동 및 좌굴해석)

  • 서광진;민병철;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.169-176
    • /
    • 1999
  • An improved formulation for spatial stability md free vibration of thin-walled curved beams with variable curvature and non-symmetric cross sections are presented based on the displacement field considering the second order terms of finite semitangential rotations. By introducing Vlasov's assumptions, the total potential energy is derived from the principle of linearized virtual work for a continuum. In this formulation, all displacement parameters and the warping function are defined at the centroid axis so that the coupled terms of bending and torsion are added to the elastic strain energy. Also, the potential energy due to initial stress resultants is consistently derived corresponding to the semitangential rotation and moment. The cubic Hermitian polynomials are utilized as shape functions for development of the curved thin-walled beam element having eight degrees of freedom. In order to illustrate the accuracy and practical usefulness of this study, . numerical solutions for free vibration of arches are presented and compared with resells of other researchers and solutions analyzed by the ABAQUS's shell element.

  • PDF

Vibration and Post-buckling Behavior of Laminated Composite Doubly Curved Shell Structures

  • Kundu, Chinmay Kumar;Han, Jae-Hung
    • Advanced Composite Materials
    • /
    • v.18 no.1
    • /
    • pp.21-42
    • /
    • 2009
  • The vibration characteristics of post-buckled laminated composite doubly curved shells are investigated. The finite element method is used for the analysis of post-buckling and free vibration of post-buckled laminated shells. The geometric non-linear finite element model includes the general non-linear terms in the strain-displacement relationships. The shell geometry used in the present formulation is derived using an orthogonal curvilinear coordinate system. Based on the principle of virtual work the non-linear finite element equations are derived. Arc-length method is implemented to capture the load-displacement equilibrium curve. The vibration characteristics of post-buckled shell are performed using tangent stiffness obtained from the converged deflection. The code is first validated and then employed to generate numerical results. Parametric studies are performed to analyze the snapping and vibration characteristics. The relationship between loads and fundamental frequencies and between loads and the corresponding displacements are determined for various parameters such as thickness ratio and shallowness.

A study on improving efficiency in computational procedure of finite element nonlinear analysis of plane frame structures (평면 프레임 구조물의 유한요소 비선형 해석을 위한 효율적인 수치해석 방법에 관한 연구)

  • 구정서;이병채;곽병만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.631-641
    • /
    • 1988
  • Computational procedures associated with finite element nonlinear analysis of plane frame structures were examined and new solution schemes were suggested. Element stiffness matrix was derived from the principle of virtual displacements. Geometric and material nonlinearities were considered in the formulation. Solution method was based upon the constant displacement length method in conjunction with the Newton-Raphson method. New solution schemes were introduced in determining the initial load increment and the sign of load increments and predicting the length of displacement increment to improve user convenience, efficiency and stability. Numerical experiments were performed for several typical problems and suggested schemes were found efficient and convenient for analyzing nonlinear frame structures.

Static analysis of simply supported porous sandwich plates

  • Taskin, Vedat;Demirhan, Pinar Aydan
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.549-557
    • /
    • 2021
  • In this study, it is aimed to analyze the bending of porous sandwich plates using the four-variable shear deformation theory. The core of the sandwich plate is assumed to be functionally graded, and face sheets are assumed to be isotropic. The pore distribution of the sandwich plate is considered even and uneven type of porosity distribution. Displacement fields are defined with four variable shear deformation theory. Equilibrium equations of porous sandwich plates are derived from virtual displacement principle. An analytical solution is obtained by Navier's approach. Results are presented for uniformly and sinusoidally distributed loaded porous sandwich plates. Face sheet -core thickness ratio, porosity distribution, amount of porosity is investigated.

Stability Analysis of Thin-Walled Space Frame by F.E.M. (유한요소법(有限要素法)에 의한 박벽(薄壁) 공간(空間)뼈대구조(構造)의 좌굴(坐屈) 해석(解析))

  • Kim, Moon Young;Shin, Hyun Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 1993
  • Tangent stiffness matrices are derived for the torsional and lateral stability analysis of the space beams and framed structures with the symmetric thin-walled section by using the principle of virtual displacement. In the cases of restrained torsion and unrestrained torsion, the elastic and geometric stiffness matrices are evaluated by using the Hermitian polynomials which represent the displacement field of the beam element in simple flexure. Numerical examples illustrate the accuracy and convergence characteristics of the derived formulations.

  • PDF

A refined theory with stretching effect for the flexure analysis of laminated composite plates

  • Draiche, Kada;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Geomechanics and Engineering
    • /
    • v.11 no.5
    • /
    • pp.671-690
    • /
    • 2016
  • This work presents a static flexure analysis of laminated composite plates by utilizing a higher order shear deformation theory in which the stretching effect is incorporated. The axial displacement field utilizes sinusoidal function in terms of thickness coordinate to consider the transverse shear deformation influence. The cosine function in thickness coordinate is employed in transverse displacement to introduce the influence of transverse normal strain. The highlight of the present method is that, in addition to incorporating the thickness stretching effect (${\varepsilon}_z{\neq}0$), the displacement field is constructed with only 5 unknowns, as against 6 or more in other higher order shear and normal deformation theory. Governing equations of the present theory are determined by employing the principle of virtual work. The closed-form solutions of simply supported cross-ply and angle-ply laminated composite plates have been obtained using Navier solution. The numerical results of present method are compared with those of the classical plate theory (CPT), first order shear deformation theory (FSDT), higher order shear deformation theory (HSDT) of Reddy, higher order shear and normal deformation theory (HSNDT) and exact three dimensional elasticity theory wherever applicable. The results predicted by present theory are in good agreement with those of higher order shear deformation theory and the elasticity theory. It can be concluded that the proposed method is accurate and simple in solving the static bending response of laminated composite plates.

Dynamic Response of a Beam Including the Mass Effect of the Moving Loads (이동 하중의 질량효과를 고려한 보의 동적응답)

  • 최교준;김용철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.61-68
    • /
    • 1991
  • The system such as railway bridge can be modelled as the restrained beam with intermediate supports. This kind of structures are subject to the moving load, which has a great effect on dynamic stresses and can cause sever motions, especially at high velocities. Therefore, to analyze the dynamic characteristics of the system due to the moving load is very important. In this paper, the governing equation of motion of a restrained beam subjected to the moving load is derived by using the Hamilton's principle. The orthogonal polynomial functions, which are trial functions and satisfying the geometric and dynamic boundary conditions, are obtained through simple procedure. The dynamic response of the system subjected to the moving loads is obtained by using the Galerkin's method and the numerical time integration technique. The numerical tests for various constraint, velocity and boundary conditions were preformed. Furthermore, the effects of mass of the moving load are studied in detail.

A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams

  • Bellifa, Hichem;Benrahou, Kouider Halim;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.695-702
    • /
    • 2017
  • In this work, a nonlocal zeroth-order shear deformation theory is developed for the nonlinear postbuckling behavior of nanoscale beams. The beauty of this formulation is that, in addition to including the nonlocal effect according to the nonlocal elasticity theory of Eringen, the shear deformation effect is considered in the axial displacement within the use of shear forces instead of rotational displacement like in existing shear deformation theories. The principle of virtual work together of the nonlocal differential constitutive relations of Eringen, are considered to obtain the equations of equilibrium. Closed-form solutions for the critical buckling load and the amplitude of the static nonlinear response in the postbuckling state for simply supported and clamped clamped nanoscale beams are determined.

Flexure of cross-ply laminated plates using equivalent single layer trigonometric shear deformation theory

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.867-891
    • /
    • 2014
  • An equivalent single layer trigonometric shear deformation theory taking into account transverse shear deformation effect as well as transverse normal strain effect is presented for static flexure of cross-ply laminated composite and sandwich plates. The inplane displacement field uses sinusoidal function in terms of thickness coordinate to include the transverse shear deformation effect. The cosine function in thickness coordinate is used in transverse displacement to include the effect of transverse normal strain. The kinematics of the present theory is much richer than those of the other higher order shear deformation theories, because if the trigonometric term (involving thickness coordinate z) is expanded in power series, the kinematics of higher order theories (which are usually obtained by power series in thickness coordinate z) are implicitly taken into account to good deal of extent. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. The closed-form solutions of simply supported cross-ply laminated composite and sandwich plates have been obtained. The results of present theory are compared with those of the classical plate theory (CPT), first order shear deformation theory (FSDT), higher order shear deformation theory (HSDT) of Reddy and exact three dimensional elasticity theory wherever applicable. The results predicted by present theory are in good agreement with those of higher order shear deformation theory and the elasticity theory.

Thermomechanical behavior of Macro and Nano FGM sandwich plates

  • Soumia, Benguediab;Tayeb, Kebir;Fatima Zohra, Kettaf;Ahmed Amine, Daikh;Abdelouahed, Tounsi;Mohamed, Benguediab;Mohamed A., Eltaher
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.1
    • /
    • pp.83-106
    • /
    • 2023
  • In this work, the static behavior of FGM macro and nano-plates under thermomechanical loading. Equilibrium equations are determined by using virtual work principle and local and non-local theory. The novelty of the current model is using a new displacement field with four variables and a warping function considering the effect of shear. Through this analysis, the considered sandwich FGM macro and nanoplates are a homogeneous core and P-FGM faces, homogeneous faces and an E-FGM core and finally P-FGM faces and an E-FGM core. The analytical solution is obtained by using Navier method. The model is verified with previous published works by other models and very close results are obtained within maximum 1% deviation. The numerical results are performed to present the influence of the various parameters such as, geometric ratios, material index as well as the scale parameters are investigated. The present model can be applicable for sandwich FG plates used in nuclear, aero-space, marine, civil and mechanical applications.