• 제목/요약/키워드: prime numbers

검색결과 111건 처리시간 0.027초

GENERALIZED CULLEN NUMBERS WITH THE LEHMER PROPERTY

  • Kim, Dae-June;Oh, Byeong-Kweon
    • 대한수학회보
    • /
    • 제50권6호
    • /
    • pp.1981-1988
    • /
    • 2013
  • We say a positive integer n satisfies the Lehmer property if ${\phi}(n)$ divides n - 1, where ${\phi}(n)$ is the Euler's totient function. Clearly, every prime satisfies the Lehmer property. No composite integer satisfying the Lehmer property is known. In this article, we show that every composite integer of the form $D_{p,n}=np^n+1$, for a prime p and a positive integer n, or of the form ${\alpha}2^{\beta}+1$ for ${\alpha}{\leq}{\beta}$ does not satisfy the Lehmer property.

Characteristic Genera of Closed Orientable 3-Manifolds

  • KAWAUCHI, AKIO
    • Kyungpook Mathematical Journal
    • /
    • 제55권4호
    • /
    • pp.753-771
    • /
    • 2015
  • A complete invariant defined for (closed connected orientable) 3-manifolds is an invariant defined for the 3-manifolds such that any two 3-manifolds with the same invariant are homeomorphic. Further, if the 3-manifold itself can be reconstructed from the data of the complete invariant, then it is called a characteristic invariant defined for the 3-manifolds. In a previous work, a characteristic lattice point invariant defined for the 3-manifolds was constructed by using an embedding of the prime links into the set of lattice points. In this paper, a characteristic rational invariant defined for the 3-manifolds called the characteristic genus defined for the 3-manifolds is constructed by using an embedding of a set of lattice points called the PDelta set into the set of rational numbers. The characteristic genus defined for the 3-manifolds is also compared with the Heegaard genus, the bridge genus and the braid genus defined for the 3-manifolds. By using this characteristic rational invariant defined for the 3-manifolds, a smooth real function with the definition interval (-1, 1) called the characteristic genus function is constructed as a characteristic invariant defined for the 3-manifolds.

Differential Subordination Properties of Sokół-Stankiewicz Starlike Functions

  • Omar, Rashidah;Halim, Suzeini Abdul
    • Kyungpook Mathematical Journal
    • /
    • 제53권3호
    • /
    • pp.459-465
    • /
    • 2013
  • Let $p(z)$ be an analytic function defined on the open unit disk D and $p(0)=1$. Condition ${\beta}$ in terms of complex numbers D and real E with -1 < E < 1 and ${\mid}D{\mid}{\leq}1$ is determined such that $1+{\beta}{\prec}\frac{1+Dz}{1+Ez}$ implies $p(z){\prec}\sqrt{1+z}$. Furthermore, the expression $1+\frac{{\beta}zp^{\prime}(z)}{p(z)}$ and $1+\frac{{\beta}zp^{\prime}(z)}{p^2(z)}$ are considered in obtaining similar results.

DIOPHANTINE INEQUALITY WITH FOUR SQUARES AND ONE kTH POWER OF PRIMES

  • Zhu, Li
    • 대한수학회지
    • /
    • 제56권4호
    • /
    • pp.985-1000
    • /
    • 2019
  • Let k be an integer with $k{\geq}3$. Define $h(k)=[{\frac{k+1}{2}}]$, ${\sigma}(k)={\min}\(2^{h(k)-1},\;{\frac{1}{2}}h(k)(h(k)+1)\)$. Suppose that ${\lambda}_1,{\ldots},{\lambda}_5$ are non-zero real numbers, not all of the same sign, satisfying that ${\frac{{\lambda}_1}{{\lambda}_2}}$ is irrational. Then for any given real number ${\eta}$ and ${\varepsilon}>0$, the inequality $${\mid}{\lambda}_1p^2_1+{\lambda}_2p^2_2+{\lambda}_3p^2_3+{\lambda}_4p^2_4+{\lambda}_5p^k_5+{\eta}{\mid}<({\max_{1{\leq}j{\leq}5}}p_j)^{-{\frac{3}{20{\sigma}(k)}}+{\varepsilon}}$$ has infinitely many solutions in prime variables $p_1,{\ldots},p_5$. This gives an improvement of the recent results.

THE NUMBER OF REPRESENTATIONS OF A POSITIVE INTEGER BY TRIANGULAR, SQUARE AND DECAGONAL NUMBERS

  • Isnaini, Uha;Melham, Ray;Toh, Pee Choon
    • 대한수학회보
    • /
    • 제56권5호
    • /
    • pp.1143-1157
    • /
    • 2019
  • Let $T_aD_b(n)$ and $T_aD^{\prime}_b(n)$ denote respectively the number of representations of a positive integer n by $a(x^2-x)/2+b(4y^2-3y)$ and $a(x^2-x)/2+b(4y^2-y)$. Similarly, let $S_aD_b(n)$ and $S_aD^{\prime}_b(n)$ denote respectively the number of representations of n by $ax^2+b(4y^2-3y)$ and $ax^2+b(4y^2-y)$. In this paper, we prove 162 formulas for these functions.

A CONJECTURE OF GROSS AND ZAGIER: CASE E(ℚ)tor ≅ ℤ/2ℤ OR ℤ/4ℤ

  • Dongho Byeon;Taekyung Kim;Donggeon Yhee
    • 대한수학회지
    • /
    • 제60권5호
    • /
    • pp.1087-1107
    • /
    • 2023
  • Let E be an elliptic curve defined over ℚ of conductor N, c the Manin constant of E, and m the product of Tamagawa numbers of E at prime divisors of N. Let K be an imaginary quadratic field where all prime divisors of N split in K, PK the Heegner point in E(K), and III(E/K) the Shafarevich-Tate group of E over K. Let 2uK be the number of roots of unity contained in K. Gross and Zagier conjectured that if PK has infinite order in E(K), then the integer c · m · uK · |III(E/K)| $\frac{1}{2}$ is divisible by |E(ℚ)tor|. In this paper, we prove that this conjecture is true if E(ℚ)tor ≅ ℤ/2ℤ or ℤ/4ℤ except for two explicit families of curves. Further, we show these exceptions can be removed under Stein-Watkins conjecture.

INTEGRAL BASES OVER p-ADIC FIELDS

  • Zaharescu, Alexandru
    • 대한수학회보
    • /
    • 제40권3호
    • /
    • pp.509-520
    • /
    • 2003
  • Let p be a prime number, $Q_{p}$ the field of p-adic numbers, K a finite extension of $Q_{p}$, $\bar{K}}$ a fixed algebraic closure of K and $C_{p}$ the completion of K with respect to the p-adic valuation. Let E be a closed subfield of $C_{p}$, containing K. Given elements $t_1$...,$t_{r}$ $\in$ E for which the field K($t_1$...,$t_{r}$) is dense in E, we construct integral bases of E over K.

GREEN'S EQUIVALENCES OF BIRGET-RHODES EXPANSIONS OF FINITE GROUPS

  • Choi, Keun-Bae;Lee, Ja-Eun;Lim, Yong-Do
    • 대한수학회보
    • /
    • 제43권2호
    • /
    • pp.353-375
    • /
    • 2006
  • In this paper we establish a counting method for the Green classes of the Birget-rhodes expansion of finite groups. As an application of the results, we derive explicit enumeration formulas for the Green classes for finite groups of order pq and a finite cyclic group of order $p^m$, where p and q are arbitrary given distinct prime numbers.

A CHARACTERIZATION OF PROJECTIVE GEOMETRIES

  • Yoon, Young-Jin
    • 대한수학회보
    • /
    • 제32권2호
    • /
    • pp.215-219
    • /
    • 1995
  • The most fundamental examples of (combinatorial) geometries are projective geometries PG(n - 1,q) of dimension n - 1, representable over GF(q), where q is a prime power. Every upper interval of a projective geometry is a projective geometry. The Whitney numbers of the second kind are Gaussian coefficients. Every flat of a projective geometry is modular, so the projective geometry is supersolvable in the sense of Stanley [6].

  • PDF

HEXAVALENT NORMAL EDGE-TRANSITIVE CAYLEY GRAPHS OF ORDER A PRODUCT OF THREE PRIMES

  • GHORBANI, MODJTABA;SONGHORI, MAHIN
    • Journal of applied mathematics & informatics
    • /
    • 제35권1_2호
    • /
    • pp.83-93
    • /
    • 2017
  • The Cayley graph ${\Gamma}=Cay(G,S)$ is called normal edge-transitive if $N_A(R(G))$ acts transitively on the set of edges of ${\Gamma}$, where $A=Aut({\Gamma})$ and R(G) is the regular subgroup of A. In this paper, we determine all hexavalent normal edge-transitive Cayley graphs on groups of order pqr, where p > q > r > 2 are prime numbers.