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A CONJECTURE OF GROSS AND ZAGIER:

CASE E(Q)tor ∼= Z/2Z OR Z/4Z

Dongho Byeon, Taekyung Kim, and Donggeon Yhee

Abstract. Let E be an elliptic curve defined over Q of conductor N , c

the Manin constant of E, and m the product of Tamagawa numbers of
E at prime divisors of N . Let K be an imaginary quadratic field where

all prime divisors of N split in K, PK the Heegner point in E(K), and
III(E/K) the Shafarevich-Tate group of E over K. Let 2uK be the num-

ber of roots of unity contained in K. Gross and Zagier conjectured that

if PK has infinite order in E(K), then the integer c ·m ·uK · |III(E/K)|
1
2

is divisible by |E(Q)tor|. In this paper, we prove that this conjecture is
true if E(Q)tor ∼= Z/2Z or Z/4Z except for two explicit families of curves.

Further, we show these exceptions can be removed under Stein–Watkins
conjecture.

1. Introduction

Let E be an elliptic curve defined over Q of conductor N , c the Manin
constant of E and m =

∏
p|N mp, where mp is the Tamagawa number of E at

a prime divisor p of N . Let K be an imaginary quadratic field where all prime
divisors of N split in K, PK the Heegner point in E(K), and III(E/K) the
Shafarevich-Tate group of E over K. Let 2uK be the number of roots of unity
contained in K. In [6], Gross and Zagier conjectured:

Conjecture 1.1 ([6, p. 311, (2.3) Conjecture]). If PK has infinite order in

E(K), then the integer c ·m · uK · |III(E/K)| 12 is divisible by |E(Q)tor|.

Rational torsion subgroups of elliptic curves E over Q are completely clas-
sified by Mazur [10]: E(Q)tor is isomorphic to one of the following 15 groups:{

Z/nZ for 1 ≤ n ≤ 10, n = 12,

Z/2Z⊕ Z/nZ for n = 2, 4, 6, 8.
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From [9, Proposition 1.1] we know that the conjecture is true when E(Q)tor is
isomorphic to Z/nZ for 5 ≤ n ≤ 10, n = 12 or to Z/2Z⊕Z/8Z (cf. [1, Theorem
1.1]). In [1, Theorem 1.2] and [2, Theorem 1.1], we proved that the conjecture
is true when E(Q)tor is isomorphic to Z/3Z, Z/2Z ⊕ Z/2Z, Z/2Z ⊕ Z/4Z, or
Z/2Z⊕Z/6Z. So the only remaining cases for the validity of the conjecture are
those when E(Q)tor is isomorphic to Z/2Z or Z/4Z. In this paper, we prove
the following theorems.

Theorem 1.2. Let E be an elliptic curve defined over Q such that E(Q)tor
is isomorphic to Z/2Z. Let ∆ be the discriminant of E and c4, c6 the usual
invariants for E. Then Conjecture 1.1 is true except for the family F1 of
elliptic curves having ∆ = 16p, c4 = 16p− 16, and c6 = −32A(2p+ 1), where
p = A2 + 4 is a prime.

Theorem 1.3. Let E be an elliptic curve defined over Q such that E(Q)tor
is isomorphic to Z/4Z. Let ∆ be the discriminant of E and c4, c6 the usual
invariants for E. Then Conjecture 1.1 is true except for the family F2 of elliptic
curves having ∆ = pnℓ, c4 = p2n+16pn+1, and c6 = −p3n−24p2n−120pn+64,
where n is a positive even integer and p ≡ 3 (mod 4) is a prime such that
pn + 16 = ℓ is a prime.

For i = 0, 1, let Xi(N) = H∗/Γi(N) denote the modular curves of level N
and C a rational isogeny class of elliptic curves of conductor N . Then there is a
unique curve Ei ∈ C and a parametrization θi : Xi(N) → Ei such that for any
E ∈ C and parametrization θ′i : Xi(N) → E, there is an isogeny πi : Ei → E
such that πi ◦ θi = θ′i. The curve Ei is called the Xi(N)-optimal curve in
C. Let π : E → E′ be an isogeny with E,E′ ∈ C. We say that π is étale
if the extension EZ → E′

Z to Néron models over Z is étale (cf. [15, Section
1]). Stevens [14] proved that there exists a unique curve Emin ∈ C such that
for every E ∈ C, there is an étale isogeny π : Emin → E and conjectured that
Emin = E1. Based on numerical computation and the Stevens conjecture, Stein
and Watkins made the following conjecture.

Conjecture 1.4 ([12, Section 4]). For each curve E in the family F1 or F2,
there is an étale isogeny π : E → E0 of degree 2r (r ≥ 1), so E1 differs from
E0 in C ∋ E.

Theorem 1.5. If we assume Conjecture 1.4, then Conjecture 1.1 is true for
the two families F1 and F2.

2. Preliminaries

Let E be an elliptic curve defined over Q of conductor N having E(Q)[2] ∼=
Z/2Z given by the equation

(1) y2 = x3 +Ax2 +Bx

with A,B ∈ Z. This curve has ∆ = 16B2(A2 − 4B), c4 = 16(A2 − 3B),
c6 = 32A(−2A2+9B) and has a 2-torsion point (0, 0). Let d be 1 or a negative
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square-free integer such that the imaginary quadratic field K = Q(
√
d) satisfies

the Heegner hypothesis: each prime divisor of N splits in K. Assume that the
Heegner point PK in E(K) has infinite order. So the rank of E(K) is 1 and
III(E/K) is finite (cf. [7]).

In this section, we give some sufficient conditions for the divisibility
2 | |III(E/K)|1/2. For each prime p (including ∞) of Q, we define

ip = dimF2E(Qp)/NKp/Qp
(E(Kp)),

where Kp is the completion of K with respect to a prime p lying over p and
NKp/Qp

is the usual norm map. Let

Sel2(E/Q) = ker
(
H1(Q, E[2]) →

∏
p

H1(Qp, E)
)

be the 2-Selmer group. Let Ed be the quadratic twist of E with respect to
d given by the equation y2 = x3 + dAx2 + d2Bx. Note that we can iden-
tify E[2] with Ed[2] and hence H1(Q, E[2]) with H1(Q, Ed[2]) via the Galois
isomorphism E[2] → Ed[2] defined by (t, 0) 7→ (dt, 0). Now write

(2) Φ = Sel2(E/Q)
⋂

Sel2(Ed/Q)

(intersection taken inside H1(Q, E[2]) ∼= H1(Q, Ed[2])). Note that originally
the definition of the group Φ is different from (2) (for the original definition,
see discussions just above [8, Theorem 1]). However, once we identify E[2] with
Ed[2] as above, Φ can be given as in (2) (cf. [8, Proposition 7]).

Proposition 2.1. Under the assumption of Conjecture 1.1, if∑
ip + dimF2Φ ≥ 4,

where the sum is taken over all primes (including ∞), then 2 | |III(E/K)|1/2.
Proof. By [8, Theorem 1], we have

dimF2
III(E/K)[2] ≥

∑
ip + dimF2

Φ− rankE(K)− 2dimF2
E(Q)[2]

≥
∑

ip + dimF2Φ− 3 ≥ 1

since rankE(K) = dimF2E(Q)[2] = 1. Because III(E/K) is finite, its order is
a square, so 2 | |III(E/K)|1/2 follows. □

Using the following proposition due to Kramer [8], we can compute ip.

Proposition 2.2. Let ∆min be the minimal discriminant of E.

(i) i∞ =

{
1 if ∆min > 0,

0 if ∆min < 0.

(ii) If the prime 2 is ramified in K and E has ordinary good reduction modulo
2, then

i2 =

{
2 if (∆min, d)Q2

= +1,

1 if (∆min, d)Q2
= −1,
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where (−,−)Q2
denotes the Hilbert norm-residue symbol.

(iii) If an odd prime p is ramified in K and E has good reduction modulo p,
then

ip =

{
2 if (∆min

p ) = +1,

1 if (∆min

p ) = −1,

where ( ·· ) denotes the Legendre symbol.

Proof. It follows from [8, Propositions 3, 5, and 6]. □

Corollary 2.3. Under the assumption of Conjecture 1.1, if E has positive
minimal discriminant and there are at least 3 odd prime divisors in d, then we
have

∑
ip ≥ 4, so 2 | |III(E/K)|1/2.

Proof. By Proposition 2.2(i), we have i∞ = 1. Let p be an odd prime dividing
d. By the Heegner hypothesis, E has good reduction modulo p. So ip ≥ 1 by
Proposition 2.2(iii). Now the corollary follows from Proposition 2.1. □

Let ϕ : E → E′ be the isogeny with kernel E[ϕ] = E(Q)[2] ∼= Z/2Z and

Selϕ(E/Q) = ker
(
H1(Q, E[ϕ]) →

∏
p

H1(Qp, E)
)

the ϕ-Selmer group. Similarly, let us denote by ϕd : Ed → E′
d the isogeny with

kernel Ed[ϕd] = Ed(Q)[2] ∼= Z/2Z. Recall that we have identified the Galois
modules E[2] and Ed[2], under which we also have E[ϕ] = Ed[ϕd].

Proposition 2.4. Let G be the subgroup of Q×/Q×2
= H1(Q, Ed[ϕd]) gen-

erated by the class of A2 − 4B. Then G is the kernel of the homomorphism
H1(Q, Ed[ϕd]) → H1(Q, Ed[2]). Thus,

ker
(
Selϕd(Ed/Q) → Sel2(Ed/Q)

)
= G ∩ Selϕd(Ed/Q).

Proof. Consider the long exact sequence of cohomology groups:

0 →Ed(Q)[ϕd] → Ed(Q)[2] → E′
d(Q)[ϕ′

d]

δ−→ H1(Q, Ed[ϕd]) → H1(Q, Ed[2]) → H1(Q, E′
d[ϕ

′
d]) → · · · ,

where ϕ′
d : E′

d → Ed is the dual isogeny of ϕd. Because the map Ed(Q)[2] →
E′

d(Q)[ϕ′
d] is the zero map, δ : E′

d(Q)[ϕ′
d]→ H1(Q, Ed[ϕd]) is injective and the

image δ(E′
d(Q)[ϕ′

d]) is the kernel of H1(Q, Ed[ϕd]) → H1(Q, Ed[2]).
We claim that this kernel is equal to G. Write Ed[2] = {O,P,Q, P + Q},

where O is the identity of Ed and P ∈ Ed(Q), and similarly write E′
d[ϕ

′
d] =

{O′, T}, where O′ is the identity of E′
d and T ∈ E′

d(Q). Since Ed[2] → E′
d[ϕ

′
d]

is surjective but Ed(Q)[2] → E′
d(Q)[ϕ′

d] is the zero map, the point Q is mapped
onto T under Ed[2] → E′

d[ϕ
′
d]. Then, δ(T ) ∈ H1(Q, Ed[ϕd]) is defined by the

1-cocyle

σ 7→ σ(Q)−Q =

{
P if σ(Q) = P +Q ̸= Q,

0 if σ(Q) = Q.
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However, this 1-cocycle corresponds to the 1-cocycle σ 7→ σ(
√
b)/

√
b defining

an element in H1(Q, µ2), where b = d2(A2 − 4B). The point Q corresponds to

the point
(

−A±d
√
A2−4B
2 , 0

)
, so σ(Q) = Q if and only if σ

(√
A2 − 4B

)
=

√
A2 − 4B. Clearly the 1-cocycle σ 7→ σ(

√
A2−4B)√
A2−4B

defining an element in

H1(Q, µ2) corresponds to A2 − 4B in Q×/Q×2
. □

From Proposition 2.4, if we find b ∈ Q×/Q×2
such that b ∈ Selϕ(E/Q) ∩

Selϕd(Ed/Q) and check b ̸∈ G, then we know that the image of b is a non-trivial
element of Φ.

3. Proof of Theorem 1.2

First we give the proof of Theorem 1.2. Lemmas and propositions, which are
used to prove Theorem 1.2, are stated and proved below the proof of Theorem
1.2.

Proof of Theorem 1.2. For an elliptic curve E defined over Q with E(Q)tor ∼=
Z/2Z, we can find a Weierstrass model given by the equation (1) with A,B ∈ Z.
Note that A and B are not necessarily relatively prime. But if p is a prime
dividing both A and B, then a simple change of variables guarantees that we
have either ordpA < 2 or ordpB < 4. From Lemma 3.1(i), (ii), we may assume
B ∈ {1,−1, 16,−16} and from Lemma 3.1(iii), we may assume if p is an odd
prime dividing A2 − 4B, then ordp(A

2 − 4B) is odd.
Suppose first that B = 1. When A = 0, 1 or −1, the corresponding curves

are ‘64a4’, ‘48a4’ and ‘24a4’. First two curves have c = 2 and the last one has
E(Q)tor ∼= Z/4Z (cf. [4]). So we may assume A2 − 4 > 0. Suppose first that
E has good reduction modulo 2. From Lemma 3.2(i), this is possible if and
only if ord2(A + 2) = 6. If A2 − 4 has at most one odd prime divisor, then
|A+2| = 64, hence A ∈ {−66, 62}. Ruling out the curve with E(Q)tor ∼= Z/4Z
(A = 62), we have the curve ‘17a3’ with c = 2 (cf. [4]). Thus we may assume
the conditions of Proposition 3.3 and have 2 | c ·m · uK · |III(E/K)|1/2 in any
case.

Now suppose that B = 1 with A2 − 4 > 0 and E has bad reduction modulo
2. From Lemma 3.2(ii), we may assume that s = 0 with A ≡ 1 (mod 4); s = 1;
s = 2 with A ≡ 10 (mod 16) or s ≥ 5 odd, where s = ord2(A + 2). Suppose
first that A is even, i.e., s ≥ 1. If A2 − 4 has no odd prime divisor, then
A+2 = ±2s with |A−2| = |±2s−4| being a power of 2 as well; this is possible
only if A ∈ {−6, 0, 6}. The case A = 0 is already excluded, the case A = 6 gives
the curve ‘32a4’ with E(Q)tor ∼= Z/4Z and the case A = −6 gives the curve
‘32a3’ with c = 2 (cf. [4]). Now suppose that A is odd, i.e., s = 0 and A ≡ 1
(mod 4). If A2 − 4 has at most one odd prime divisor, then either |A− 2| = 1
or |A+2| = 1, hence A ∈ {±1,±3}. Ruling out the already excluded cases and
the case with A ̸≡ 1 (mod 4), the case A = −3 solely remains. But this gives
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the curve ‘80a2’ with c = 2 (cf. [4]). Thus we may assume the conditions of
Proposition 3.4 and have 2 | c ·m · uK · |III(E/K)|1/2 in any case.

Suppose that B = −1. From Lemma 3.2(iii), we may assume A ≡ 1, 2 or
3 (mod 4). If A ≡ 2 (mod 4), then write A = 2A′ for some odd A′ and so
A2 + 4 = 4(A′2 + 1). This has no odd prime divisor if and only if A′2 + 1
is a power of 2. By Mihailescu’s theorem (cf. [11]), this is possible only if
A′ = ±1, i.e., A = ±2. These correspond to the curves ‘128b2’ and ‘128d2’,
each with c = 2 (cf. [4]). If A is odd and A2 + 4 = pk for some odd prime
p and k > 1, then Nagell’s theorem (cf. [3, Lemma 5.4]) forces that A = 11,
p = 5 and k = 3, which corresponds to the curve ‘80b4’ with c = 2 (cf. [4]). If
A2 + 4 = p for some odd prime p, then these curves correspond to the curves
in the family F1. Thus we may assume the conditions of Proposition 3.5 and
have 2 | c ·m · uK · |III(E/K)|1/2 in any case.

Suppose B = 16. If A ≡ 0 (mod 4), then we can make a change of variables
to (1) to reduce the 2-divisibility of A and B. Also in view of Lemma 3.2(iv),
we may assume A ≡ 1 (mod 4). Suppose moreover that |A| ≤ 9, i.e., A =
−7,−3, 1, 5, 9. Ruling out the curves with E(Q)tor ∼= Z/4Z (A = −7, 1 and 9),
we have two curves ‘39a4’ and ‘55a4’, each with c = 2 (cf. [4]). Hence we assume
A2 − 64 > 0. Moreover, since {A : |A− 8| = 1 or |A+ 8| = 1} = {±7,±9}, we
also exclude these cases. Thus we may assume the conditions of Proposition
3.6 and have 2 | c ·m · uK · |III(E/K)|1/2 in any case.

Finally, suppose B = −16. Similarly, we assume A ≡ 1 (mod 4) as before.
If A2 + 64 = pk for some odd prime p and some k > 1, then [3, Lemma 5.5]
forces that A = ±15, p = 17 and k = 2, which correspond to the curves ‘17a2’
and ‘272b2’, each with E(Q)tor ∼= Z/2Z ⊕ Z/2Z (cf. [4]). If A2 + 64 = p for
some odd prime p, then these curves correspond to the Neumann–Setzer curves
having étale isogenies of degree 2 to the X0(p)-optimal curves in their rational
isogeny classes (cf. [13]) and have c = 2 by Lemma 5.1. Thus we may assume
the conditions of Proposition 3.7 and have 2 | c ·m · uK · |III(E/K)|1/2 in any
case. □

Lemma 3.1. Let E be an elliptic curve defined by the equation (1).
(i) Let p be a prime dividing both A and B and assume either ordpA < 2 or

ordpB < 4. Then 2 | mp.
(ii) If p is a prime dividing B but not A, then 2 | mp unless p = 2 with

A ≡ 1 (mod 4) and ord2B = 4.
(iii) If p is an odd prime such that ordp(A

2 − 4B) is even, then 2 | mp.

Proof. (i) By Tate’s algorithm, we see that E has reduction modulo p of type
III, III∗, or I∗k for some k, all with even mp.

(ii) If p is odd, then ordpc4 = 0 and ordp∆ = 2ordpB, and hence E has
multiplicative reduction modulo p of type I2ordpB . In particular, mp is even.
Suppose p = 2. Note that the equation

y2 + 2xy = x3 + (A− 1)x2 +Bx
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gives another Weierstrass model of the curve given by (1). If ord2B ≥ 4 and
A ≡ 1 (mod 4), we further reduce the equation into the form

y2 + xy = x3 +
A− 1

4
x2 +

B

16
x,

which has ord2∆ = 2ord2B − 8 and ord2c4 = 0. Hence in this case, m2 is also
even unless ord2B = 4. When 1 ≤ ord2B ≤ 3 or A ≡ 3 (mod 4), applying
Tate’s algorithm we see E has reduction of type III, III∗, or I∗k for some k as
above.

(iii) From (i), we may assume p ∤ AB. In this case, E has reduction of type
Iordp(A2−4B), and the parity of mp and ordp(A

2 − 4B) is the same. □

Lemma 3.2. Let E be an elliptic curve defined by the equation (1). Write
s = ord2(A+ 2).

(i) Let B = 1. Then E has good reduction modulo 2 if and only if s = 6.
(ii) Let B = 1. Then E has bad reduction modulo 2 and m2 is odd if and

only if s = 0 with A ≡ 1 (mod 4), s = 1, s = 2 with A ≡ 10 (mod 16) or s ≥ 5
odd.

(iii) Let B = −1. If A ≡ 0 (mod 4), then m2 = 2.
(iv) Let B = ±16. If A ≡ 2 or 3 (mod 4), then 2 | m2.

Proof. (i) and (ii). s = 0 if and only if A is odd. In this case, changing variables
we have the equation:

y2 + 2y = x3 + (A+ 3)x2 + 2(A+ 2)x+ (A+ 1).

In this case, Tate algorithm tells us that if A ≡ 1 (mod 4), then E has reduction
of type II with m2 = 1, and if A ≡ −1 (mod 4), then E has reduction of type
III with m2 = 2.

Now assume A is even. If s ≥ 6, then make a change of variables:

y2 + xy = x3 + 2−2(A+ 2)x2 + 2−3(A+ 2)x+ 2−6(A+ 2).

This equation is minimal at 2 since c4 = A2 − 3 is odd. As the discriminant is
2−8(A− 2)(A+ 2), with 2-adic order s− 6, in this case E has good reduction
modulo 2 if and only if s = 6 and multiplicative reduction of type Is−6 when
s ≥ 7.

Finally, let 1 ≤ s ≤ 5; we can make a change of variables:

y2 + 2xy = x3 + (A+ 2)x2 + 2(A+ 2)x+ (A+ 2).

Tate’s algorithm shows that

• when s = 1, E has reduction of type II with m2 = 1;
• when s = 2, E has reduction of type I∗n for some n, and we have odd

m2 if and only if A ≡ 10 (mod 16);
• when s = 3, E has reduction of type I∗0 with m2 = 2;
• when s = 4, E has reduction of type III∗ with m2 = 2;
• finally, when s = 5, E has reduction of type II∗ with m2 = 1.

(iii) and (iv) are also obtained by similar arguments. □
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Proposition 3.3 (B = 1 and E has good reduction modulo 2). Under the
assumption of Conjecture 1.1, let E be given by the equation (1) with B = 1.
Suppose

• A2 − 4 > 0,
• if p is an odd prime dividing A2 − 4, then ordp(A

2 − 4) is odd,
• there are at least two distinct odd prime divisors in A2 − 4, and
• E has good reduction modulo 2.

Then we have 2 | uK · |III(E/K)|1/2.

Proof. In this case, we have ord2(A + 2) = 6 by Lemma 3.2(i). The equation
(1) with B = 1 has ∆ = 16(A2 − 4) > 0 and ∆min = 2−8(A2 − 4). We note
that E has ordinary good reduction modulo 2.

First we compute the Selmer group Selϕ(E/Q). For each prime p (includ-
ing ∞), we denote by δp the map E′(Qp)/ϕ(E(Qp)) → H1(Qp, E[ϕ]). Since

Selϕ(E/Q) ⊂ H1(Q, E[ϕ]) ∼= Q×/Q×2
, the elements of Selϕ(E/Q) are those

classes of b ∈ Q× such that for each prime p (including ∞) of Q, the restric-

tion b ∈ H1(Qp, E[ϕ]) ∼= Q×
p /Q×

p
2
is contained in the image Im δp. Using the

method in [5], we can compute these local images as follows.

• Im δ∞ ⊇ {1}.
• Im δp = Q×

p /Q×
p
2
for odd primes p | ∆ such that ordp∆ is odd.

• Im δp ⊇ Z×
p Q×2

p /Q×2
p for other odd primes p.

• Im δ2 = Z×
2 Q

×2
2 /Q×2

2 .

So in particular, Selϕ(E/Q) contains odd primes p | ∆ with ordp∆ being odd

in Q×/Q×2
.

Note that ∆min > 0, i.e., i∞ = 1 by Proposition 2.2(i). By the fact that
uK = 2 if d = −1 and Corollary 2.3, we only need to concern about the cases
d = −2, d = −q, −2q or −qq′ for some odd primes q and q′.

Assume that d = −2. If p is an odd prime dividing ∆, then (−2
p ) = 1 by the

Heegner hypothesis, so p ≡ 1 or −5 (mod 8). This implies (p,−2)Q2
= 1. So

(∆min, d)Q2 = 1 and we have i2 = 2 by Proposition 2.2(ii). Thus i∞ + i2 = 3.

Now we consider the Selmer group Selϕd(Ed/Q). The local images are given
as follows: Im δd∞ ⊇ {1}; Im δdp are the same as in Im δp for odd primes p and

Im δd2 ⊇ {1, 2,−5,−10}. If in particular, we let p be an odd prime such that p |
∆ and ordp∆ is odd, then the image of p ∈ Selϕ(E/Q)∩ Selϕd(Ed/Q) is a non-

trivial element of Φ by Proposition 2.4 (note that ker(Selϕ(E/Q) → Sel2(E/Q))

and ker(Selϕd(Ed/Q) → Sel2(Ed/Q)) are generated by the class of A2 − 4 and
the existence of another odd prime dividing ∆ in an odd power guarantees that
the class of p does not vanish in the 2-Selmer group), so dimF2

Φ ≥ 1. Hence
we have

∑
ip + dimF2

Φ ≥ 4 and Proposition 2.1 concludes the proof.
Assume that d = −q with a prime q ≡ 1 (mod 4), then d ≡ −1 (mod 4). In

this case, the prime 2 is ramified inK and we have i2 ≥ 1 by Proposition 2.2(ii).
Because i∞ = 1, we may assume iq = 1, i.e., (∆min

q ) = −1 by Proposition
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2.2(iii). Thus i∞+i2+iq ≥ 3. Now we consider the Selmer group Selϕd(Ed/Q).
The local images are given as follows: Im δd∞ ⊇ {1}; Im δdp are the same as in

Im δp for odd primes p and Im δd2 = Z×
2 Q

×2
2 /Q×2

2 . Thus the image of any odd

prime p | ∆ with ordp∆ being odd in Selϕ(E/Q) ∩ Selϕd(Ed/Q) is a nontrivial
element of Φ by Proposition 2.4, so dimF2Φ ≥ 1. Hence we have

∑
ip +

dimF2
Φ ≥ 4 and Proposition 2.1 concludes the proof.

Assume d = −q with a prime q ≡ 3 (mod 4), then d ≡ 1 (mod 4). If p is

an odd prime dividing ∆, then (−q
p ) = (−1

p )(−1)
q−1
2

p−1
2 (pq ) = (pq ) = 1 by the

Heegner hypothesis, so (∆min

q ) = 1, i.e., iq = 2 by Proposition 2.2(iii). Thus

i∞+ iq = 3. Now we consider the Selmer group Selϕd(Ed/Q). The local images
are given as follows: Im δdq ⊇ {1, qu} for some representative u with (uq ) = −1;

Imδd2 = Z×
2 Q

×2
2 /Q×2

2 and the rest are the same. We note that if p | ∆ is an odd
prime, then p ∈ Im δdq because (pq ) = 1. Thus the image of any odd prime p | ∆
with ordp∆ being odd in Selϕ(E/Q) ∩ Selϕd(Ed/Q) is a nontrivial element of
Φ by Proposition 2.4, so dimF2

Φ ≥ 1. Hence we have
∑

ip + dimF2
Φ ≥ 4 and

Proposition 2.1 concludes the proof.
Assume that d = −2q for some odd prime q. In this case, the prime 2 is

ramified in K and we have i2 ≥ 1 by Proposition 2.2(ii). Because i∞ = 1, we
may assume iq = 1, i.e., (∆min

q ) = −1 by Proposition 2.2(iii). Thus i∞+i2+iq ≥
3. Write c = A2 − 4. Now we consider the Selmer group Selϕd(Ed/Q). The
local images are given as follows: Im δdq ⊇ {1, qu} for some representative u
with (uq ) = −1;

Im δd2 =


⟨2,−5, c⟩ when q ≡ 1 (mod 8),

⟨−1, 2, c⟩ when q ≡ −1 (mod 8),

⟨−2,−5, c⟩ when q ≡ 5 (mod 8),

⟨−1, 10, c⟩ when q ≡ −5 (mod 8);

and the rest are the same. Now we are going to do some case-by-case study.
We note that c = A2 − 4 is exactly divisible by 28. Let c′ = 2−8c = ∆min.

• Suppose that q ≡ 1 (mod 8). Then d = −2 in Q×
2 /Q

×
2

2
.

– If c′ ≡ 1 (mod 8), then (d,∆min)Q2
= 1, and thus i2 = 2, i.e.,∑

ip ≥ 4.
– If c′ ≡ −1 (mod 8), then (d,∆min)Q2

= −1, and thus i2 = 1, i.e.,∑
ip ≥ 3. In this case, Im δd2 = ⟨2,−5,−1⟩ = Q×

2 /Q
×
2

2
.

– If c′ ≡ 5 (mod 8), then (d,∆min)Q2 = −1, and thus i2 = 1, i.e.,∑
ip ≥ 3. In this case, Im δd2 = ⟨2,−5, 5⟩ = Q×

2 /Q
×
2

2
.

– If c′ ≡ −5 (mod 8), then (d,∆min)Q2
= 1, and thus i2 = 2, i.e.,∑

ip ≥ 4.

• Suppose that q ≡ −1 (mod 8). Then d = 2 in Q×
2 /Q

×
2

2
.
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– If c′ ≡ 1 (mod 8), then (d,∆min)Q2
= 1, and thus i2 = 2, i.e.,∑

ip ≥ 4.
– If c′ ≡ −1 (mod 8), then (d,∆min)Q2 = 1, and thus i2 = 2, i.e.,∑

ip ≥ 4.
– If c′ ≡ 5 (mod 8), then (d,∆min)Q2

= −1, and thus i2 = 1, i.e.,∑
ip ≥ 3. In this case, Im δd2 = ⟨−1, 2, 5⟩ = Q×

2 /Q
×
2

2
.

– If c′ ≡ −5 (mod 8), then (d,∆min)Q2
= −1, and thus i2 = 1, i.e.,∑

ip ≥ 3. In this case, Im δd2 = ⟨−1, 2,−5⟩ = Q×
2 /Q

×
2

2
.

• Suppose that q ≡ 5 (mod 8). Then d = −10 in Q×
2 /Q

×
2

2
.

– If c′ ≡ 1 (mod 8), then (d,∆min)Q2 = 1, and thus i2 = 2, i.e.,∑
ip ≥ 4.

– If c′ ≡ −1 (mod 8), then (d,∆min)Q2
= −1, and thus i2 = 1, i.e.,∑

ip ≥ 3. In this case, Im δd2 = ⟨−2,−5,−1⟩ = Q×
2 /Q

×
2

2
.

– If c′ ≡ 5 (mod 8), then (d,∆min)Q2
= −1, and thus i2 = 1, i.e.,∑

ip ≥ 3. In this case, Im δd2 = ⟨−2,−5, 5⟩ = Q×
2 /Q

×
2

2
.

– If c′ ≡ −5 (mod 8), then (d,∆min)Q2 = 1, and thus i2 = 2, i.e.,∑
ip ≥ 4.

• Suppose that q ≡ −5 (mod 8). Then d = 10 in Q×
2 /Q

×
2

2
.

– If c′ ≡ 1 (mod 8), then (d,∆min)Q2
= 1, and thus i2 = 2, i.e.,∑

ip ≥ 4.
– If c′ ≡ −1 (mod 8), then (d,∆min)Q2

= 1, and thus i2 = 2, i.e.,∑
ip ≥ 4.

– If c′ ≡ 5 (mod 8), then (d,∆min)Q2 = −1, and thus i2 = 1, i.e.,∑
ip ≥ 3. In this case, Im δd2 = ⟨−1, 10, 5⟩ = Q×

2 /Q
×
2

2
.

– If c′ ≡ −5 (mod 8), then (d,∆min)Q2
= −1, and thus i2 = 1, i.e.,∑

ip ≥ 3. In this case, Im δd2 = ⟨−1, 10,−5⟩ = Q×
2 /Q

×
2

2
.

Having these discussions, we can conclude that we have either
∑

ip ≥ 4 or∑
ip ≥ 3 and Imδd2 = Q×

2 /Q
×
2

2
. Suppose the latter. Let {p1, · · · , pn} be the

set of all odd prime divisors pi | ∆ such that ordpi∆ is odd. As (p1

q ) · · · (pn

q ) =

(∆min

q ) = −1, either we can find an λ = pi such that (pi

q ) = 1 or (pi

q ) = −1 for all

i and n is odd. In the latter case, because n ≥ 3, we take the product of two such
primes λ = pipj with i ̸= j. Then the image of λ ∈ Selϕ(E/Q) ∩ Selϕd(Ed/Q)
is a non-trivial element of Φ by Proposition 2.4, so dimF2Φ ≥ 1. Hence we have∑

ip + dimF2
Φ ≥ 4 and Proposition 2.1 concludes the proof.

Finally, assume d = −qq′. If the prime 2 is ramified in K = Q(
√
d), then

we have
∑

ip ≥ 4. Hence we may assume the prime 2 is unramified, which
means that d ≡ 1 (mod 4). Without loss of generality, we then assume q ≡ 1
(mod 4) and q′ ≡ 3 (mod 4). Moreover we further assume iq = iq′ = 1, i.e.,

(∆min

q ) = (∆min

q′ ) = −1 by Proposition 2.2(iii). Thus i∞ + iq + iq′ = 3. Now we

consider the Selmer group Selϕd(Ed/Q). The local images are given as follows:

Im δdq ⊇ {1, qu} for some representative u with (uq ) = −1; Im δdq′ = Q×
q′/Q

×
q′

2
;
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Im δd2 = Z×
2 Q

×2
2 /Q×2

2 and the rest are the same. If we take λ as above, then

the image of λ ∈ Selϕ(E/Q) ∩ Selϕd(Ed/Q) is a non-trivial element of Φ by
Proposition 2.4, so dimF2Φ ≥ 1. Hence we have

∑
ip + dimF2Φ ≥ 4 and

Proposition 2.1 concludes the proof. □

Proposition 3.4 (B = 1 and E has bad reduction modulo 2). Under the
assumption of Conjecture 1.1, let E be given by the equation (1) with B = 1.
Write s = ord2(A+ 2). Suppose

• A2 − 4 > 0,
• if p is an odd prime dividing A2 − 4, then ordp(A

2 − 4) is odd,
• there is at least one odd prime divisor in A2 − 4 if A is even and there
are at least two distinct odd prime divisors in A2 − 4 if A is odd,

• E has bad reduction modulo 2, and
• either one of the following holds: s = 0 and A ≡ 1 (mod 4), s = 2 and
A ≡ 10 (mod 16), or s = 1, 4, 5 or s ≥ 7.

(In particular, all the cases where m2 is odd (cf. Lemma 3.2) are contained in
the last condition.) Then we have 2 | uK · |III(E/K)|1/2.

Proof. First we consider the Selmer group Selϕ(E/Q). The local images are
given as follows:

• Im δ∞ ⊇ {1}.
• Im δp = Q×

l /Q
×
l

2
for odd primes p | ∆ such that ordp(∆) is odd.

• Im δp ⊇ Z×
ℓ Q×2

p /Q×2
p for other odd primes p.

• Im δ2 =

{
Z×
2 Q

×2
2 /Q×2

2 if A ≡ 1 (mod 4),

Q×2
2 /Q×2

2 otherwise.

Since E has bad reduction modulo 2, the prime 2 splits completely in K by
the Heegner hypothesis, and so we have d ≡ 1 (mod 8). From Corollary 3.3
and by this fact, we only need to deal with the cases where d = −q for some
odd prime q (q ≡ −1 (mod 8)) or d = −qq′ for distinct odd primes q and q′

with either (q, q′) ≡ (1,−1) (mod 8) or (q, q′) ≡ (5,−5) (mod 8) without loss
of generality.

In both cases, we can prove that the images Im δdp are the same as the proof
of Proposition 3.3 and

∑
ip + dimF2

Φ ≥ 4 by the same argument as the proof
of Proposition 3.3. We omit the detail. □

Proposition 3.5 (B = −1). Under the assumption of Conjecture 1.1, let E
be given by the equation (1) with B = −1. Suppose

• A ≡ 1, 2 or 3 (mod 4),
• if p is an odd prime dividing A2 + 4, then ordp(A

2 + 4) is odd, and
• there is at least one odd prime divisors in A2+4 if A ≡ 2 (mod 4) and
there are at least two distinct odd prime divisors in A2 +4 if A is odd.

Then we have 2 | uK · |III(E/K)|1/2.
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Proof. The elliptic curve E given by the equation (1) with B = −1, i.e., y2 =
x3 + Ax2 − 1 has ∆ = 24(A2 + 4) and c4 = 24(A2 + 3). We note that this
equation is minimal for each prime. By Fermat’s theorem of the sums of two
squares, we have p ≡ 1 (mod 4) for odd primes p | (A2 + 4).

First we compute the Selmer group Selϕ(E/Q). The local images are given
as follows:

• Im δ∞ ⊇ {1}.
• Im δp = Q×

l /Q
×
l

2
for odd primes p | ∆.

• Im δp = Z×
p Q×2

p /Q×2
p for other odd primes p.

• Im δ2 =

{
{1, 5} if A ≡ 1, 3 (mod 4),

{1, 2, 5, 10} if A ≡ 2 (mod 4).

So Selϕ(E/Q) in Q×/Q×2
contains odd primes p | ∆ because they all have

p ≡ 1 (mod 4), together with 2 whenever A is even.
Note that ∆min > 0, i.e., i∞ = 1 by Proposition 2.2(i). Since E has bad

reduction modulo 2, the prime 2 splits completely in K by the Heegner hy-
pothesis, and so we have d ≡ 1 (mod 8). From Corollary 3.3 and by this
fact, we only need to deal with the cases where d = −q for some odd prime
q (q ≡ −1 (mod 8)) or d = −qq′ for distinct odd primes q and q′ with either
(q, q′) ≡ (1,−1) (mod 8) or (q, q′) ≡ (5,−5) (mod 8) without loss of generality.

Assume that d = −q with q ≡ −1 (mod 8). If p is an odd prime dividing
∆, then (pq ) = (−q

p ) = 1 by the Heegner hypothesis. From this, we have

(A
2+4
q ) = 1 for any cases of A. This implies iq = 2 by Proposition 2.2(iii).

Thus i∞ + iq = 3. Now we consider the Selmer group Selϕd(Ed/Q). The local
images Im δdp are the same as Im δp, except when p = q, we have Im δdq = {1}.
If A ≡ 2 (mod 4), then ord2(A

2 + 4) = 3. Note that 2 is a square modulo q.

Thus the image of 2 ∈ Selϕ(E/Q) ∩ Selϕd(Ed/Q) is a non-trivial element of Φ
by Proposition 2.4. If A ≡ 1 or 3 (mod 4), then the image of any one of odd

prime divisors of A2 + 4 in Selϕ(E/Q) ∩ Selϕd(Ed/Q) is a non-trivial element
of Φ by Proposition 2.4. Hence we have

∑
ip + dimF2

Φ ≥ 4 and Proposition
2.1 concludes the proof.

Assume that d = −qq′ with for distinct odd primes q and q′ such that
either (q, q′) ≡ (1,−1) (mod 8) or (q, q′) ≡ (5,−5) (mod 8). We may assume

that iq = iq′ = 1, i.e., (A
2+4
q ) = (A

2+4
q′ ) = −1 by Proposition 2.2(iii). Thus

i∞ + iq + iq′ = 3. Now we consider the Selmer group Selϕd(Ed/Q). The
local image Im δdp are the same as the local image Imδp, except when p = q,

Im δdq = Q×
q /Q×

q . As above, if A ≡ 2 (mod 4), then the image of 2 is a non-
trivial element of Φ and if A ≡ 1 or 3 (mod 4), then the image of any one
of odd prime divisors of A2 + 4 is a non-trivial element of Φ. Hence we have∑

ip + dimF2
Φ ≥ 4 and Proposition 2.1 concludes the proof. □
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Proposition 3.6 (B = 16). Under the assumption of Conjecture 1.1, let E be
given by the equation (1) with B = 16. Suppose

• A ≡ 1 (mod 4),
• A2 − 64 > 0,
• if p is an odd prime dividing A2 − 64, then ordp(A

2 − 64) is odd, and
• there is an odd prime divisor in each of A− 8 and A+ 8.

Then we have 2 | uK · |III(E/K)|1/2.

Proof. The elliptic curve E is given by the equation (1) with B = 16, i.e., y2 =
x3 + Ax2 + 16x has ∆ = 212(A2 − 64) and c4 = 24(A2 − 48). We note that
this equation is minimal for each prime ̸= 2, indeed, the minimal discriminant
of such E is ∆min = A2 − 64 > 0, which is odd. In particular, E has ordinary
good reduction modulo 2.

First we compute the Selmer group Selϕ(E/Q). The local images are given
as follows:

• Im δ∞ ⊇ {1}.
• Im δp = Q×

p /Q×
p
2
for odd primes p | ∆.

• Im δp = Z×
p Q×2

p /Q×2
p for other odd primes p.

• Im δ2 = {1, 5}.
Note that ∆min > 0, i.e., i∞ = 1 by Proposition 2.2(i). By the fact that

uK = 2 if d = −1 and Corollary 2.3, we only need to concern about the cases
d = −2, d = −q, −2q or −qq′ for some odd primes q and q′.

Assume that d = −2. As (∆min, d)Q2
=

(
A2 − 64,−2

)
Q2

= (1,−2)Q2
= 1,

we have i2 = 2 by Proposition 2.2(ii). Thus i∞ + i2 = 3. Now we consider

the Selmer group Selϕd(Ed/Q). The local images Im δdp are the same as Im δp,

except when p = 2, we can only say Imδd2 ⊇ {1}. If p is an odd prime dividing
∆, then (−2

p ) = 1 by the Heegner hypothesis, so p ≡ 1 or −5 (mod 8). But as

A± 8 ≡ 1 or 5 (mod 8), either we can find an odd prime p | ∆ such that p ≡ 1
(mod 8), in which case we take λ = p, or all odd primes p | ∆ have p ≡ −5
(mod 8) and there are even number of odd prime divisors in each of A− 8 and
A+8. In the latter case, we take λ as the product of any two odd prime divisors.
Then the image of λ ∈ Selϕ(E/Q) ∩ Selϕd(Ed/Q) is a non-trivial element of
Φ by Proposition 2.4. Hence we have

∑
ip + dimF2

Φ ≥ 4 and Proposition 2.1
concludes the proof.

For the remaining cases, we can also prove that
∑

ip+dimF2
Φ ≥ 4 by similar

arguments. We omit the detail. □

Proposition 3.7 (B = −16). Under the assumption of Conjecture 1.1, let E
be given by the equation (1) with B = −16. Suppose

• A ≡ 1 (mod 4),
• if p is an odd prime dividing A2 + 64, then ordp(A

2 + 64) is odd, and
• there are at least two odd prime divisors in A2 + 64.

Then we have 2 | uK · |III(E/K)|1/2.
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Proof. In this case, we can also prove that
∑

ip + dimF2
Φ ≥ 4 by arguments

similar to the proof of previous propositions. We omit the detail. □

4. Proof of Theorem 1.3

First we give the proof of Theorem 1.3. Lemmas and propositions, which are
used to prove Theorem 1.3, are stated and proved below the proof of Theorem
1.3.

Proof of Theorem 1.3. For an elliptic curve E defined over Q with E(Q)tor ∼=
Z/4Z, we can find a Weierstrass model given by the equation

(3) y2 + xy − λy = x3 − λx2

with λ ∈ Q (cf. the proof of [9, Proposition 2.4]). This equation has ∆ =
λ4(1+16λ), c4 = 16λ2+16λ+1, and c6 = 64λ3− 120λ2− 24λ− 1. By Lemma
4.1(i), we may assume λ = 1/β for some β ∈ Z \ {0,−16}. Using the change
of variables x 7→ x/β2, y 7→ y/β3, we can transform the equation (3) into the
following form

(4) y2 + βxy − β2y = x3 − βx2

with ∆ = β7(β+16), c4 = β2(β2+16β+16), and c6 = −β3(β3+24β2+120β−
64).

Suppose first that β has no odd prime factor. If β = ±1, then E is isomorphic
to either ‘15a8’ or ‘17a4’, having c = 4 (cf. [4]). Assume β = 2t. In view of
Lemma 4.2(iii), (iv), we only need to consider the cases with β = 4 or β = 16.
But these two cases correspond to the curves ‘40a3’ and ‘32a4’ respectively, all
with m2 = c = 2 (cf. [4]). Now assume β = −2t. Again, by Lemma 4.2(iii) we
assume t = 2z for some z ≥ 1. Noting that z = 1 gives the curve ‘24a4’ with
m2 = c = 2 (cf. [4]) and z = 2 gives a singular curve, we further reduce to the
case z ≥ 3. By Lemma 4.2(ii), (v), if z = 3 or z ≥ 5, then we have 2 | m2

and if z = 4, then the curve becomes ‘15a7’, having c = 2 (cf. [4]). Now in any
case, we can transform the equation (4) into the form (1) with A = 22z−2 − 2
and B = 1. Note that A2 − 4 = 22z(22z−4 − 1) = −22z−4(β + 16) has at least
two distinct odd prime divisor (3 and 5) in the case z = 4, and has at least one
odd prime divisor when z = 3 or z ≥ 5. By Lemma 4.3(ii), we may assume
that if ℓ is an odd prime dividing β + 16, then ordℓ(β + 16) is odd. Hence by
Proposition 3.3 (when E has good reduction modulo 2 which is the case if and
only if z = 4) and by Proposition 3.4 (when E has bad reduction modulo 2,
i.e., when z = 3 or z ≥ 5), we have 4 | c ·m · uK · |III(E/K)|1/2.

Now assume β has an odd prime divisor. In view of Lemmas 4.2 and 4.3, we
only need to consider, for an odd prime p, (i) β = pn with even n, (ii) β = −pn

with even n and finally (iii) β = −28pn with even n, all with the assumption
that for any odd prime ℓ | (β + 16), ordℓ(β + 16) is odd. Note also that in any
case mp = 2.
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Suppose first that β = pn with n = 2z (z ≥ 1). If p2z + 16 = ℓk for another
odd prime ℓ with k > 1 and p ≡ 3 (mod 4), then [3, Lemma 5.5] forces that
p = 3, z = 1, ℓ = 5 and k = 2, which corresponds to the curve ‘15a3’ having the
rational torsion subgroup isomorphic to Z/2Z⊕ Z/4Z (cf. [4]). If p2z + 16 = ℓ
for another odd prime ℓ and p ≡ 3 (mod 4), then these curves correspond
to the curves in the family F2 (note that in this case, we can transform the
equation (3) into y2+pzxy−pzy = x3−x2 with ∆ = p2zℓ, c4 = p4z+16p2z+1,
and c6 = −p6z − 24p4z − 120p2z + 64). Thus we may assume the conditions of
Proposition 4.4 and have 4 | c ·m · uK · |III(E/K)|1/2.

If β = −pn, then we are done by Proposition 4.5, except possibly for two
curves ‘15a3’ and ‘21a4’. For the curve ‘21a4’, we have 4 | c ·m (cf. [4]).

If β = −28pn with n = 2z (z ≥ 1), then the equation is transformed into
y2 = x3 + Ax2 + x with A = 64p2z − 2. In this case E has good reduction
modulo 2 and we have A2 − 4 = 28p2z(16p2z − 1) = −24p2z(β + 16) > 0 and
it has at least two odd prime divisors ℓ such that ordℓ(A

2 − 4) is odd. Hence
Proposition 3.3 shows 4 | c ·m · uK · |III(E/K)|1/2. □

Lemma 4.1. Let E be an elliptic curve given by the equation (3).
(i) If p is a prime such that ordpλ > 0, then Eλ has split multiplicative

reduction of type I4n. So 4 | mp.
(ii) If p is an odd prime such that ordpλ < 0, then Eλ has potentially multi-

plicative reduction. It has multiplicative reduction if and only if ordpλ is even.

Proof. This is proved in the proof of [9, Proposition 2.4]. □

Lemma 4.2. Let E be an elliptic curve given by the equation (4) with β = 2tu
for some t ≥ 0 and odd u.

(i) If t = 0, then m2 = 1.
(ii) If t = 8 and u ≡ −1 (mod 4), then m2 = 1.
(iii) If t is odd, then m2 = 4.
(iv) If t = 2z with z ≥ 3 and if u ≡ 1 (mod 4), then m2 = 4.
(v) For all the other cases for t, we have even m2.

Proof. All of the statements can be checked by Tate’s algorithm. For more
details, see the proof of [9, Proposition 2.4]. □

Lemma 4.3. Let E be an elliptic curve given by the equation (4).
(i) If p is an odd prime dividing β, then 2 | mp. Moreover, 4 | mp if ordpβ

is odd.
(ii) If ℓ is an odd prime dividing β+16, then E has multiplicative reduction

modulo ℓ. So mℓ has the same parity as ordℓ(β + 16).

Proof. (i) The first statement was proved in the proof of [9, Proposition 2.4].
If ordpβ is odd, then E has additive reduction modulo p by Lemma 4.1(ii), and
hence by [2, Lemma 2.1(i)] we have 4 | mp.

(ii) After a suitable change of variables, we see that E has multiplicative
reduction of type Iordℓ(β+16). □
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Proposition 4.4. Under the assumption of Conjecture 1.1, let E be given by
the equation (4). Suppose that β = pn with an odd prime p and even n and
that for each odd prime ℓ dividing β + 16, ordℓ(β + 16) is odd. If either

• p ≡ 1 (mod 4), or
• there are at least two odd prime divisors in β + 16,

then we have 2 | uK · |III(E/K)|1/2.

Proof. Write β = p2z with z ≥ 1 and we begin with the following equation:

y2 + p2zxy − p4zy = x3 − p2zx2.

By a suitable change of variables, the equation transformed into

y2 = x3 + (p2z + 8)x2 + 16x.

The last equation has ∆ = 212(p2z +16)p2z and c4 = 16p4z +256p2z +256. We
note that the minimal discriminant of E is given by ∆min = (p2z + 16)p2z and
E has ordinary good reduction modulo 2.

First we compute the Selmer group Selϕ(E/Q). The local images are given
as follows.

• Im δ∞ = {1}.
• Im δℓ = Z×

ℓ Q
×2
ℓ /Q×2

ℓ for odd primes ℓ ∤ ∆.

• Im δℓ = Q×2
ℓ /Q×2

ℓ for odd prime ℓ | (p2z + 16).

• Im δp =

{
Q×2

p /Q×2
p if p ≡ 1 (mod 4),

Z×
p Q×2

p /Q×2
p if p ≡ 3 (mod 4).

• Im δ2 = {1, 5}.
Since p2z + 16 is a sum of two squares, any prime divisor ℓ of p2z + 16 satisfies

ℓ ≡ 1 (mod 4). So Selϕ(E/Q) in Q×/Q×2
contains odd primes ℓ | p2z + 16,

together with p in case when p ≡ 1 (mod 4).
Note that ∆min > 0, i.e., i∞ = 1 by Proposition 2.2(i). By the fact that

uK = 2 if d = −1 and Corollary 2.3, we only need to concern about the cases
d = −2, d = −q, −2q or d = −qq′ for some odd primes q and q′.

Assume that d = −2. As (∆min, d)Q2
=

(
(p2z + 16)p2z,−2

)
Q2

= (1,−2)Q2

= 1, we have i2 = 2 by Proposition 2.2(ii). Thus i∞+ i2 = 3. Now we consider

the Selmer group Selϕd(Ed/Q). The local images are given as follows.

• Im δd∞ = R×2/R×2.
• Im δdℓ = Z×

ℓ Q
×2
ℓ /Q×2

ℓ for any odd prime ℓ ∤ ∆.

• Im δdℓ = Q×2
l /Q×2

l for any odd prime ℓ | (p2z + 16).

• Im δdp =

{
Q×2

p /Q×2
p if p ≡ ±1 (mod 8),

Z×
p Q×2

p /Q×2
p if p ≡ ±5 (mod 8).

• Im δd2 = {1,−2}.
By the Heegner hypothesis, for any odd prime ℓ | ∆, we have (−2

ℓ ) = 1, and
so ℓ ≡ 1 or −5 (mod 8). However, by the sum of two squares theorem, we
have ℓ ≡ 1 (mod 8) if ℓ | p2z + 16. From Proposition 2.4, we have that if
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p ≡ 1 (mod 8), then the image of p ∈ Selϕ(E/Q) ∩ Selϕd(Ed/Q) is a non-
trivial element of Φ and if p ≡ −5 (mod 8), then the image of any odd prime

ℓ | p2z + 16 in Selϕ(E/Q) ∩ Selϕd(Ed/Q) is a non-trivial element of Φ. Hence
we have i∞ + i2 + dimF2

Φ ≥ 4 and Proposition 2.1 concludes the proof.
Assume that d = −q with a prime q ≡ 1 (mod 4), then d ≡ 3 (mod 4).

In this case, the prime 2 is ramified in K and we have i2 ≥ 1 by Proposition
2.2(ii). If ℓ is an odd prime dividing p2z + 16, then ( ℓq ) = (−q

ℓ ) = 1 by the

Heegner Hypothesis, so (∆min

q ) = 1, i.e., iq = 2 by Proposition 2.2(iii). Hence

i∞ + i2 + iq ≥ 4 and Proposition 2.1 concludes the proof.
Assume that d = −q with a prime q ≡ 3 (mod 4), then d ≡ 1 (mod 4).

If ℓ is an odd prime dividing p2z + 16, then ( ℓq ) = (−q
ℓ ) = 1 by the Heegner

Hypothesis, so (∆min

q ) = 1, i.e., iq = 2 by Proposition 2.2(iii). Thus i∞+iq = 3.

Now we consider the Selmer group Selϕd(Ed/Q). The local images are given as
follows.

• Im δd∞ = R×2/R×2.
• Im δdℓ = Z×

ℓ Q
×2
ℓ /Q×2

ℓ for any odd prime ℓ ∤ ∆, ℓ ̸= q.

• Im δdℓ = Q×2
l /Q×2

l for any odd prime ℓ | (p2z + 16).

• Im δdp =

{
Q×2

p /Q×2
p if p ≡ 1 (mod 4),

ZpQ×2
p /Q×2

p if p ≡ 3 (mod 4).

• Im δdq ⊇ {1, qu} for some u with (uq ) = −1.

• Im δd2 = {1, 5}.

From Proposition 2.4, we have that if p ≡ 1 (mod 4), then the image of p ∈
Selϕ(E/Q) ∩ Selϕd(Ed/Q) is a non-trivial element of Φ and if p ≡ 3 (mod 4),

then the image of any odd prime ℓ | p2z + 16 in Selϕ(E/Q) ∩ Selϕd(Ed/Q) is a
non-trivial element of Φ. Hence we have i∞+ iq +dimF2Φ ≥ 4 and Proposition
2.1 concludes the proof.

Assume that d = −2q for some odd prime q. In this case, the prime 2
is ramified in K and we have i2 ≥ 1 by Proposition 2.2(ii). If ℓ is an odd
prime dividing p2z + 16, then ( ℓq ) = (−q

ℓ ) = 1 by the Heegner Hypothesis, so

(∆min

q ) = 1, i.e., iq = 2 by Proposition 2.2(iii). Hence i∞ + i2 + iq ≥ 4 and

Proposition 2.1 concludes the proof.
Finally, assume d = −qq′. If the prime 2 is ramified in K = Q(

√
d), then we

have i∞+i2+iq+iq′ ≥ 4. Hence we may assume that the prime 2 is unramified,
which means that d ≡ 1 (mod 4). Without loss of generality, we then assume
q ≡ 1 (mod 4) and q′ ≡ 3 (mod 4). Moreover, we further assume iq = iq′ = 1,

i.e., (p
2z+16
q ) = (p

2z+16
q′ ) = −1 by Proposition 2.2(iii). Thus i∞ + iq + iq′ = 3.

Now we consider the Selmer group Selϕd(Ed/Q). The local images are given as
follows.

• Im δd∞ = R×2/R×2.
• Im δdℓ = Z×

ℓ Q
×2
ℓ /Q×2

ℓ for any odd prime ℓ ∤ ∆, ℓ ̸= q, q′.
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• Im δdℓ = Q×2
l /Q×2

l for any odd prime ℓ | p2z + 16.

• Im δdp =

{
Q×2

p /Q×2
p if p ≡ 1 (mod 4),

ZpQ×2
p /Q×2

p if p ≡ 3 (mod 4).

• Im δdq ⊇ {1, qu} for some u with (uq ) = −1.

• Im δdq′ = Q×2
q′ /Q

×2
q′ .

• Im δd2 = {1, 5}.
Suppose first that p ≡ 1 (mod 4). From Proposition 2.4, we have that if

(pq ) = 1, then the image of p ∈ Selϕ(E/Q)∩Selϕd(Ed/Q) is non-trivial element

of Φ and if (pq ) = −1, then the image of either p or pq is non-trivial element

of Φ. Now suppose that p ≡ 3 (mod 4). If there is an odd prime ℓ | p2z + 16
such that ( ℓq ) = 1, then we take λ = ℓ. Otherwise, there are two distinct odd

prims ℓ, ℓ′ | p2z + 16 such that ( ℓq ) = ( ℓ
′

q ) = −1, in which case we take λ = ℓℓ′.

Then the image of λ ∈ Selϕ(E/Q) ∩ Selϕd(Ed/Q) is a non-trivial element of
Φ by Proposition 2.4. Hence i∞ + iq + iq′ + dimF2

Φ ≥ 4 and Proposition 2.1
concludes the proof. □

Proposition 4.5 (β = −pn). Under the assumption of Conjecture 1.1, let E
be given by the equation (4). Suppose that β = −pn with an odd prime p and
even n and that for each odd prime ℓ dividing β+16, ordℓ(β+16) is odd. Then
we have 2 | uK · |III(E/K)|1/2, except for ‘15a3’ and ‘21a4’.

Proof. Write β = −p2z and we begin with the following equation:

y2 − p2zxy − p4zy = x3 + p2zx2.

By a suitable change of variables, the equation transformed into

y2 = x3 + (p2z − 8)x2 + 16x.

The last equation has ∆ = 212(p2z − 16)p2z and c4 = 16p4z − 256p2z + 256.
We note that the minimal discriminant of E is given by ∆min = (p2z − 16)p2z

and E has ordinary good reduction modulo 2. Since the only instance when
∆min < 0 is the case p = 3 and z = 1, which gives the curve ‘21a4’, we may
assume ∆min > 0, i.e., i∞ = 1 by Proposition 2.2(i).

First we compute the Selmer group Selϕ(E/Q). The local images are given
as follows.

• Im δ∞ = {1}.
• Im δℓ = Z×

ℓ Q
×2
ℓ /Q×2

ℓ for odd primes ℓ ∤ ∆.

• Im δℓ = Q×2
ℓ /Q×2

ℓ for odd primes ℓ | ∆.
• Im δ2 = {1, 5}.

So Selϕ(E/Q) contains odd primes ℓ dividing ∆ such that ℓ ≡ 1 (mod 4), in
Q×2/Q×2. We may assume that there are at least two distinct odd prime
divisors in ∆ other than p, except for the curve ‘15a3’ (corresponding to the
case when pz − 4 = 1).
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By the fact that uK = 2 if d = −1 and Corollary 3.3, we only need to
concern about the cases d = −2, d = −q, −2q or d = −qq′ for some odd primes
q and q′.

Assume d = −2. As (∆min, d)Q2
=

(
(p2z − 16)p2z,−2

)
Q2

= (1,−2)Q2
= 1,

we have i2 = 2 by Proposition 2.2(ii). Thus i∞ + i2 = 3. Now we consider the

Selmer group Selϕd(Ed/Q). The local images are given as follows.

• Im δd∞ = R×/R×2.
• Im δdℓ = Z×

ℓ Q
×2
ℓ /Q×2

ℓ for any odd prime ℓ ∤ ∆.

• Im δdℓ = Q×
l /Q

×2
l for any odd prime ℓ | ∆.

• Im δd2 = {1,−2}.
By the Heegner hypothesis, for any odd prime ℓ | ∆, we have (−2

ℓ ) = 1, and
so ℓ ≡ 1 or −5 (mod 8). From Proposition 2.4, we have if p ≡ 1 (mod 8),
then the image of p is a non-trivial element of Φ and if p ≡ −5 (mod 8), then
either one of the images of ℓ or ℓp is a non-trivial element of Φ. Hence we have
i∞ + i2 + dimF2Φ ≥ 4 and Proposition 2.1 concludes the proof.

For the remaining cases, we can also prove that i∞+ i2+ iq+dimF2Φ ≥ 4 or
i∞ + i2 + iq + iq′ + dimF2

Φ ≥ 4 by similar arguments. We omit the detail. □

5. Proof of Theorem 1.5

To prove Theorem 1.5, we need the following lemma.

Lemma 5.1. Let E be an elliptic curve defined over Q of conductor N and
E0 the X0(N)-optimal curve in its rational isogeny class. If there is an étale
isogeny π : E → E0 of degree 2r (r ≥ 1), then the Manin constant c of E is
even.

Proof. Let ωE and ωE0
be the Néron differentials on E and E0, respectively.

Since π is étale, we have π∗(ωE0
) = ωE , where π∗ is the induced map on

differentials (cf. [15, Section 1]). Let π′ : E0 → E be the dual isogeny of π.
Then π ◦ π′ = [2r] is the multiplication by 2r. So π′∗(ωE) = π′∗ ◦ π∗(ωE0

) =
(π ◦ π′)∗(ωE0) = 2rωE0 . Let θ0 : X0(N) → E0 be the modular parametrization
of E0. Then (π′ ◦ θ0)

∗(ωE) = θ∗0 ◦ π′∗(ωE) = 2rθ∗0(ωE0) = 2rc0ωf , where ωf

is the differential 1-form associated to a normalized newform f of level N and
c0 is the Manin constant of E0. Thus the Manin constant c = 2rc0 of E is
even. □

Now we can prove Theorem 1.5.

Proof of Theorem 1.5. If E is a curve in F1, then we have 2 | c by Conjecture
1.4 and Lemma 5.1. If E is a curve in F2, then we have 2 |m by the proof of
Theorem 1.3 and 2 | c by Conjecture 1.4 and Lemma 5.1. Thus we complete
the proof. 2



1106 D. BYEON, T. KIM, AND D. YHEE

References

[1] D. Byeon, T. Kim, and D. Yhee, A conjecture of Gross and Zagier: case E(Q)tor ∼=
Z/3Z, Int. J. Number Theory 15 (2019), no. 9, 1793–1800. https://doi.org/10.1142/

S1793042119501008

[2] D. Byeon, T. Kim, and D. Yhee, A conjecture of Gross and Zagier: case E(Q)tor ∼=
Z/2Z ⊕ Z/2Z,Z/2Z ⊕ Z/4Z or Z/2Z ⊕ Z/6Z, Int. J. Number Theory 16 (2020), no. 7,

1567–1572. https://doi.org/10.1142/S1793042120500827
[3] Z. Cao, C. Chu, and W. C. Shiu, The exponential Diophantine equation AX2 +BY 2 =

λkZ and its applications, Taiwanese J. Math. 12 (2008), no. 5, 1015–1034. https://

doi.org/10.11650/twjm/1500574244

[4] J. Cremona, Elliptic curve data, available at http://johncremona.github.io/ecdata.

[5] T. Goto, A study on the Selmer groups of elliptic curves with a rational 2-torsion,

Doctoral thesis, Kyushu University, 2002.
[6] B. H. Gross and D. B. Zagier, Heegner points and derivatives of L-series, Invent. Math.

84 (1986), no. 2, 225–320. https://doi.org/10.1007/BF01388809
[7] V. A. Kolyvagin, Euler systems, in The Grothendieck Festschrift, Vol. II, 435–483, Progr.
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