• Title/Summary/Keyword: prime modules

Search Result 79, Processing Time 0.155 seconds

ASSOCIATED PRIME SUBMODULES OF A MULTIPLICATION MODULE

  • Lee, Sang Cheol;Song, Yeong Moo;Varmazyar, Rezvan
    • Honam Mathematical Journal
    • /
    • v.39 no.2
    • /
    • pp.275-296
    • /
    • 2017
  • All rings considered here are commutative rings with identity and all modules considered here are unital left modules. A submodule N of an R-module M is said to be extended to M if $N=aM$ for some ideal a of R and it is said to be fully invariant if ${\varphi}(L){\subseteq}L$ for every ${\varphi}{\in}End(M)$. An R-module M is called a [resp., fully invariant] multiplication module if every [resp., fully invariant] submodule is extended to M. The class of fully invariant multiplication modules is bigger than the class of multiplication modules. We deal with prime submodules and associated prime submodules of fully invariant multiplication modules. In particular, when M is a nonzero faithful multiplication module over a Noetherian ring, we characterize the zero-divisors of M in terms of the associated prime submodules, and we show that the set Aps(M) of associated prime submodules of M determines the set $Zdv_M(M)$ of zero-dvisors of M and the support Supp(M) of M.

On Graded Quasi-Prime Submodules

  • AL-ZOUBI, KHALDOUN;ABU-DAWWAS, RASHID
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.259-266
    • /
    • 2015
  • Let G be a group with identity e. Let R be a G-graded commutative ring and M a graded R-module. In this paper, we introduce the concept of graded quasi-prime submodules and give some basic results about graded quasi-prime submodules of graded modules. Special attention has been paid, when graded modules are graded multiplication, to find extra properties of these submodules. Furthermore, a topology related to graded quasi-prime submodules is introduced.

ON RINGS WHOSE PRIME IDEALS ARE MAXIMAL

  • Hong, Chan-Yong;Kim, Nam-Kyun;Kwak, Tai-Keun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.1-19
    • /
    • 2000
  • We investigate in this paper the maximality of prime ideals in rings whose simple singular left R-modules are p-injective.

  • PDF

On Weakly Prime and Weakly 2-absorbing Modules over Noncommutative Rings

  • Groenewald, Nico J.
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.33-48
    • /
    • 2021
  • Most of the research on weakly prime and weakly 2-absorbing modules is for modules over commutative rings. Only scatterd results about these notions with regard to non-commutative rings are available. The motivation of this paper is to show that many results for the commutative case also hold in the non-commutative case. Let R be a non-commutative ring with identity. We define the notions of a weakly prime and a weakly 2-absorbing submodules of R and show that in the case that R commutative, the definition of a weakly 2-absorbing submodule coincides with the original definition of A. Darani and F. Soheilnia. We give an example to show that in general these two notions are different. The notion of a weakly m-system is introduced and the weakly prime radical is characterized interms of weakly m-systems. Many properties of weakly prime submodules and weakly 2-absorbing submodules are proved which are similar to the results for commutative rings. Amongst these results we show that for a proper submodule Ni of an Ri-module Mi, for i = 1, 2, if N1 × N2 is a weakly 2-absorbing submodule of M1 × M2, then Ni is a weakly 2-absorbing submodule of Mi for i = 1, 2

FULLY PRIME MODULES AND FULLY SEMIPRIME MODULES

  • Beachy, John A.;Medina-Barcenas, Mauricio
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1177-1193
    • /
    • 2020
  • Fully prime rings (in which every proper ideal is prime) have been studied by Blair and Tsutsui, and fully semiprime rings (in which every proper ideal is semiprime) have been studied by Courter. For a given module M, we introduce the notions of a fully prime module and a fully semiprime module, and extend certain results of Blair, Tsutsui, and Courter to the category subgenerated by M. We also consider the relationship between the conditions (1) M is a fully prime (semiprime) module, and (2) the endomorphism ring of M is a fully prime (semiprime) ring.

ON WEAKLY S-PRIME SUBMODULES

  • Hani A., Khashan;Ece Yetkin, Celikel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1387-1408
    • /
    • 2022
  • Let R be a commutative ring with a non-zero identity, S be a multiplicatively closed subset of R and M be a unital R-module. In this paper, we define a submodule N of M with (N :R M)∩S = ∅ to be weakly S-prime if there exists s ∈ S such that whenever a ∈ R and m ∈ M with 0 ≠ am ∈ N, then either sa ∈ (N :R M) or sm ∈ N. Many properties, examples and characterizations of weakly S-prime submodules are introduced, especially in multiplication modules. Moreover, we investigate the behavior of this structure under module homomorphisms, localizations, quotient modules, cartesian product and idealizations. Finally, we define two kinds of submodules of the amalgamation module along an ideal and investigate conditions under which they are weakly S-prime.

RELATIVE RELATION MODULES OF FINITE ELEMENTARY ABELIAN p-GROUPS

  • Yamin, Mohammad;Sharma, Poonam Kumar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1205-1210
    • /
    • 2014
  • Let E be a free product of a finite number of cyclic groups, and S a normal subgroup of E such that $$E/S{\sim_=}G$$ is finite. For a prime p, $\hat{S}=S/S^{\prime}S^p$ may be regarded as an $F_pG$-module via conjugation in E. The aim of this article is to prove that $\hat{S}$ is decomposable into two indecomposable modules for finite elementary abelian p-groups G.

STRONGLY IRREDUCIBLE SUBMODULES

  • ATANI, SHAHABADDIN EBRAHIMI
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.121-131
    • /
    • 2005
  • This paper is motivated by the results in [6]. We study some properties of strongly irreducible submodules of a module. In fact, our objective is to investigate strongly irreducible modules and to examine in particular when sub modules of a module are strongly irreducible. For example, we show that prime submodules of a multiplication module are strongly irreducible, and a characterization is given of a multiplication module over a Noetherian ring which contain a non-prime strongly irreducible submodule.