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ON PRIME SUBMODULES OF AN INJECTIVE

MODULE OVER A NOETHERIAN RING

Zahra Pourshafiey and Reza Nekooei∗

Abstract. In this paper, we characterize the prime submodules of
an injective module over a Noetherian ring.

1. Introduction

Throughout this paper all rings are commutative with identity and
all modules are unitary. A proper submodule P of an R-module M is
called prime, if rm ∈ P for some r ∈ R and m ∈ M implies m ∈ P
or r ∈ (P : M), where (P : M) = {r ∈ R | rM ⊆ P}. If P is a
prime submodule of an R-module M then (P : M) is a prime ideal of
R. The set of all prime submodules of an R-module M is denoted by
Spec(M). Prime submodules of a module over a commutative ring have
been studied by many authors, see [5, 6, 9]. Also prime submodules of
a finitely generated free module over a PID were studied in [2, 3]. The
authors in [2], described prime submodules of a finitely generated free
module over a UFD and characterized the prime submodules of a free
module of finite rank over a PID. The authors in [7, 8], extended some
results obtained in [2] to a Dedekind and a valuation domain. In this
paper, we characterize the prime submodules of an injective module over
a Noetherian ring.

2. Main Results

An R-module M is injective if for every R-module monomorphism
f : N −→ N ′ and for every R-module homomorphism g : N −→ M ,
there exists an R-module homomorphism h : N ′ −→ M such that
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hf = g. We know that every injective submodule N of an R-module M
is a direct summand of M . Let N ⊆M be R-modules. We say that M
is an essential extension of N , if for any nonzero R-submodue U of M
one has U ∩ N 6= 0. An essential extension M of N is called proper if
N 6= M . By [1, Proposition 3.2.2], an R-module M is injective if and
only if it has no proper essential extension. Let M be an R-module. An
injective module E is called an injective envelope of M , if E is an essen-
tial extension of M and denoted by E(M). We know that any module
M can be embedded into an injective module and injective envelope of
M is the minimal embedding. In this case, the corresponding injective
module is unique up to isomorphism.

The following lemma is an special case of Lemma 9.8 in [4].

Lemma 2.1. Let R be an integral domain with quotient field K.
Then E(R) ' K.

Proof. At first we show that K is an essential extension of R. If
0 6= x = a

b ∈ K, then a = bx ∈ Rx∩R and so K is an essential extension
of R. It is sufficient to show that K is an injective R-module. Let I be
a nonzero ideal of R and f : I −→ K be an R-module homomorphism.
Let a be a nonzero element of I and f(a) = c

d . We define Φ : R −→ K,
by Φ(x) = xc

ad , where x ∈ R. Clearly, Φ is an R-module homomorphism.

Suppose that a′ ∈ I and f(a′) = c′

d′ . We have f(aa′) = af(a′) = a′f(a)

and hence ac′

d′ = a′c
d . Therefore, Φ(a′) = a′c

ad = ac′

ad′ = c′

d′ = f(a′). Now by
Baer’s Criterion, K is an injective R-module and so E(R) ' K.

An element x of an R-module M is called torsion, if it has a nonzero
annihilator in R. Let t(M) be the set of all torsion elements of M . It is
clear that if R is an integral domain, then t(M) is a submodule of M .
We say that t(M) is the torsion submodule of M . If t(M) = M , then M
is called a torsion module and if t(M) = 0, then M is called a torsion-free
module. An R-module M is divisible if for every 0 6= r ∈ R, rM = M .
It is easy to see that every injective module over an integral domain R is
divisible. If M is a divisible R-module, then for every proper submodule
N of M , (N : M) = 0.

Lemma 2.2. Let R be a ring and M be a divisible R-module with
P ∈ Spec(M). We have

i) If t(M) 6= M , then t(M) ⊆ P .
ii) P is a divisible R-module.
iii) For every x ∈M − P , ann(x) = 0.
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Proof. i) Let x ∈ t(M). Then there exists 0 6= r ∈ R such that
rx = 0 ∈ P . Since (P : M) = 0, x ∈ P . So t(M) ⊆ P .

ii) Let 0 6= r ∈ R and x ∈ P . There exists y ∈ M such that ry = x.
Since (P : M) = 0, y ∈ P and we have x ∈ rP . So rP = P and hence
P is a divisible R-module.

iii) Let r ∈ R, x ∈ M − P and rx = 0. Since rx ∈ P and x /∈ P ,
r ∈ (P : M) = 0 and hence ann(x) = 0.

Corollary 2.3. Let R be an integral domain and M be a divisible
R-module. Then M is torsion if and only if Spec(M) = ∅.

Proof. If t(M) 6= M then by [5, Result 3], t(M) is a prime submodule
of M . Now the proof follows by Lemma 2.2(i).

Lemma 2.4. Let R be an integral domain with quotient field K. If
M is a torsion-free divisible R-module, then M is isomorphic to a direct
sum of copies of K.

Proof. We prove that M is a K-module. Let r be a nonzero element
of R and x ∈ M . Since M is torsion-free and rM = M , there exists a
unique y ∈ M such that ry = x. Then the R-module homomorphism
fr : M −→ M defined by fr(x) = y is well-defined. Now we define
f : K ×M −→M , by f

(
r
s , x

)
= fs(rx). So M is a free K-module and

hence M is isomorphic to a direct sum of copies of K.

Recall that a prime ideal p of a ring R is an associated prime of an
R-module M , if p = ann(x) for some nonzero element x ∈ M . The set
of all associated primes of an R-module M is denoted by Ass(M).

Lemma 2.5. Let R be a Noetherian domain and p be a nonzero

prime ideal of R. Then Spec
(
E
(
R
p

))
= ∅.

Proof. Let E = E
(
R
p

)
and P ∈ Spec(E). Suppose that x ∈ E − P .

By Lemma 2.2(iii), ann(x) = 0 and hence {0} ∈ Ass(E). But by [1,
Lemma 3.2.7], Ass(E) = {p}, which is a contradiction. So Spec(E) =
∅.

For a Noetherian ring R, by [1, Theorem 3.2.8], an injective module
can be uniquely written as a direct sum of indecomposable injective
modules such that the indecomposable injective R-modules are just the
injective envelopes of the cyclic R-modules R

p , where p ∈ Spec(R). The

next Theorem characterizes the prime submodules of an injective module
over a Noetherian domain.
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Theorem 2.6. Let R be a Noetherian domain with quotient field K.
Suppose that M is an injective R-module. Then

i) M = t(M)⊕N , where N ' ⊕i∈IK, for some index set I.
ii) Spec(M) = ∅ or Spec(M) = {t(M) ⊕D | D � N, D ' ⊕j∈JK,

for some index set J}.

Proof. i) For every p ∈ Spec(R), let M(p) = ⊕E
(
R
p

)
such that

the number of indecomposable summands in the decomposition of M(p)

equals dimk(p) HomRp(k(p),Mp), where k(p) =
Rp

pRp
. By Lemma 2.1, we

have M((0)) ' ⊕x∈XK, for some index set X. Let A =
⊕

06=p∈Spec(R)

M(p),

B = ⊕x∈XK and U = A⊕ B. By [1, Theorem 3.2.8], we have M ' U .
Now we prove that t(U) = A ⊕ {0}. Let 0 6= p ∈ Spec(R). By Lemma

2.5, Spec
(
E
(
R
p

))
= ∅ and by Corollary 2.3, E

(
R
p

)
is a torsion R-

module. So M(p) is a torsion R-module. Therefore A ⊕ {0} ⊆ t(U).
On the other hand, let y = (x1, x2) ∈ t(U), where x1 ∈ A and x2 ∈ B.
Then there exists 0 6= r ∈ R such that ry = 0 and hence rx2 = 0. Since
B is a torsion-free R-module, we have x2 = 0 and hence y ∈ A ⊕ {0}.
Therefore t(U) = A⊕ {0}. Thus U ' t(U)⊕B. Since M is an injective
R-module, U is an injective R-module and hence t(U) is an injective
R-module. On the other hand, t(M) ' t(U) and hence t(M) is an in-
jective submodule of M . Then there exists a submodule N of M such
that M = t(M) ⊕ N . Therefore N is a torsion-free divisible R-module
and by Lemma 2.4, N ' ⊕i∈IK, for some index set I.

ii) Suppose that M = t(M). Since M is an injective module over
an integral domain, then M is divisible and hence by Corollary 2.3,
Spec(M) = ∅. Now suppose that, M 6= t(M). Let Ω = {t(M)⊕D | D �
N, D ' ⊕j∈JK, for some index set J}. We show that Spec(M) =
Ω. Assume that P ∈ Ω. Then there exist an index set J and proper
submodule D of N , such that P = t(M) ⊕ D and D ' ⊕j∈JK. Now
we show that P = t(M) ⊕D ∈ Spec(M). Suppose that 0 6= r ∈ R and
x = x1 + x2 ∈ t(M) ⊕ N such that rx ∈ t(M) ⊕ D. Thus rx2 ∈ D.
Since D is a prime K-submodule of N , we have x2 ∈ D and hence x =
x1 + x2 ∈ P . We conclude that P ∈ Spec(M) and hence Ω ⊆ Spec(M).
Conversely, suppose that P ∈ Spec(M). By Lemma 2.2(i), t(M) ⊆ P .
Let D = {x2 ∈ N | ∃x1 ∈ t(M) such that x1 + x2 ∈ P}. Clearly
D is a proper submodule of N and t(M) ∩ D = {0}. We show that
P = t(M)⊕D. By definition of D, we have P ⊆ t(M)⊕D. Conversely,
let x = x1 + x2 ∈ t(M) ⊕ D. Then there exists y ∈ t(M) such that
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y + x2 ∈ P . We have (x1 + x2) − (y + x2) = x1 − y ∈ t(M) ⊆ P
and hence x = x1 + x2 ∈ P . So P = t(M) ⊕ D. Now we prove that
D ∈ Spec(N). Let 0 6= r ∈ R, x ∈ N and rx ∈ D. Then there exists
y ∈ t(M) such that y + rx ∈ P . By Corollary 2.3, t(M) ∈ Spec(M)
and by Lemma 2.2(ii), t(M) is divisible. So rt(M) = t(M) and hence
there exists z ∈ t(M) such that rz = y. Thus r(z + x) ∈ P and so
z + x ∈ P . Therefore x ∈ D and D ∈ Spec(N). Now by Lemma 2.2(ii),
D is a proper torsion-free divisible submodule of N and by Lemma 2.4,
D ' ⊕j∈JK, for some index set J .

Example 2.7. Let M be a divisible abelian group. We know that
M is a direct sum of copies of Z(p∞), for various primes p and copies of
the rational numbers Q. So we have three cases:

Case (i) M = ⊕p∈ΓZ(p∞), where Γ is a subset of prime numbers.
Then Spec(M) = ∅.

Case (ii) M = ⊕i∈IQ, for some index set I. Then Spec(M) =
{D | D = 0 or D ' ⊕j∈JQ, for some index set J}.

Case (iii) M = (⊕p∈ΓZ(p∞))⊕ (⊕i∈IQ), where Γ is a subset of prime
numbers and I is an index set. Then Spec(M) = {(⊕p∈ΓZ(p∞)) ⊕
D | D ' ⊕j∈JQ, for some index set J}.

In particular, let M = Z(2∞) ⊕ Z(3∞) ⊕ Q ⊕ Q and Ω be the set
of all N(a, b) such that N(a, b) = {(x, y) | x, y ∈ Q and ax + by = 0},
where a, b ∈ Q and (a, b) 6= (0, 0). We have Ω is the set of all non-trivial
Q-subspaces of Q-vector space Q ⊕ Q. On the other hand, t(M) =
Z(2∞)⊕ Z(3∞)and hence by Theorem 2.6,

Spec(M) = {Z(2∞)⊕ Z(3∞)⊕D | D ∈ Ω} ∪ {Z(2∞)⊕ Z(3∞)}.

Theorem 2.8. Let R be a ring but not a domain.

i) If M is a divisible R-module, then Spec(M) = ∅.
ii) Let R be a Noetherian ring and M be an injective R-module.

Then for every p ∈ Spec(R), Spec
(
E
(
R
p

))
= ∅ if and only if

Spec(M) = ∅.

Proof. i) Let P ∈ Spec(M). Then (P : M) = 0 ∈ Spec(R) and hence
R is an integral domain, which is a contradiction. Hence Spec(M) = ∅.

ii) For every p ∈ Spec(R), let M(p) =
⊕

E
(
R
p

)
where the num-

ber of indecomposable summands in the decomposition of M(p) equals

dimk(p)HomRp(k(p), Mp), where k(p) =
Rp

pRp
. Let U =

⊕
p∈Spec(R)

M(p).

By [1, Theorem 3.2.8], we have M ' U . So Spec(M) = ∅ if and
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only if Spec(U) = ∅. Now we show that for every p ∈ Spec(R),

Spec
(
E
(
R
p

))
= ∅ if and only if Spec(U) = ∅. Assume that for ev-

ery p ∈ Spec(R), Spec
(
E
(
R
p

))
= ∅. We prove that Spec(U) = ∅.

Let P ∈ Spec(U). Put Spec(R) = {ps|s ∈ S}, for some index set S.
Assume that for every s′ ∈ S, As′ = ⊕s∈SBs such that Bs′ = M(ps′)
and for every s 6= s′, Bs = 0. Clearly U = ⊕s∈SAs. If for every s ∈ S,
As ⊆ P then P = U , which is a contradiction. Hence there exists k ∈ S
such that Ak * P . Now we show that Ak ∩ P ∈ Spec(Ak). Clearly
Ak ∩ P 6= Ak. Let x ∈ Ak, r ∈ R and rx ∈ Ak ∩ P but x /∈ Ak ∩ P .
Then x ∈ U , rx ∈ P but x /∈ P . So r ∈ (P : U) and hence rU ⊆ P .
Therefore rAk = r(U ∩ Ak) ⊆ P ∩ Ak. Thus P ∩ Ak ∈ Spec(Ak).
We have Ak ' M(pk). Then there exists Q ∈ Spec(M(pk)) such

that Q ' P ∩ Ak. Now M(pk) = ⊕i∈IE

(
R

pk

)
, for some index set

I. For every j ∈ I, let Cj = ⊕i∈IDi such that Dj = E
(

R
pk

)
and

for every i 6= j, Di = 0. Clearly M(pk) = ⊕i∈ICi. If for every
i ∈ I, Ci ⊆ Q, then M(pk) = Q, which is a contradiction. Thus
there exist l ∈ I such that Cl * Q. Hence Cl ∩ Q ∈ Spec(Cl). Since

Cl ' E
(

R
pk

)
, then Spec

(
E
(

R
pk

))
6= ∅, which is a contradiction. There-

fore Spec(U) = ∅. Conversely, suppose that Spec(U) = ∅. We show

that for every p ∈ Spec(R), Spec
(
E
(
R
p

))
= ∅. Let q ∈ Spec(R) and

P ∈ Spec
(
E
(
R
q

))
. By definition, M(q) = ⊕i∈IE

(
R

q

)
, for some index

set I. Let Qj = ⊕i∈INi such that Nj = P and for every i ∈ I, i 6= j,

Ni = E
(
R
q

)
. It is easy to see that Qj ∈ Spec(M(q)). By the above

notation, there exists s′ ∈ S such that As′ ' M(q). So there exists
W ∈ Spec(As′) such that W ' Qj . Let V = ⊕s∈SEs such that Es′ = W
and for every s ∈ S, s 6= s′, Es = As. It is easy to see that V ∈ Spec(U),
which is a contradiction. The proof is complete.
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