ON PRIME SUBMODULES OF AN INJECTIVE MODULE OVER A NOETHERIAN RING

Zahra Pourshafiey and Reza Nekooei*

Abstract

In this paper, we characterize the prime submodules of an injective module over a Noetherian ring.

1. Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. A proper submodule P of an R-module M is called prime, if $r m \in P$ for some $r \in R$ and $m \in M$ implies $m \in P$ or $r \in(P: M)$, where $(P: M)=\{r \in R \mid r M \subseteq P\}$. If P is a prime submodule of an R-module M then $(P: M)$ is a prime ideal of R. The set of all prime submodules of an R-module M is denoted by $\operatorname{Spec}(M)$. Prime submodules of a module over a commutative ring have been studied by many authors, see $[5,6,9]$. Also prime submodules of a finitely generated free module over a PID were studied in [2, 3]. The authors in [2], described prime submodules of a finitely generated free module over a UFD and characterized the prime submodules of a free module of finite rank over a PID. The authors in $[7,8]$, extended some results obtained in [2] to a Dedekind and a valuation domain. In this paper, we characterize the prime submodules of an injective module over a Noetherian ring.

2. Main Results

An R-module M is injective if for every R-module monomorphism $f: N \longrightarrow N^{\prime}$ and for every R-module homomorphism $g: N \longrightarrow M$, there exists an R-module homomorphism $h: N^{\prime} \longrightarrow M$ such that

[^0]$h f=g$. We know that every injective submodule N of an R-module M is a direct summand of M. Let $N \subseteq M$ be R-modules. We say that M is an essential extension of N, if for any nonzero R-submodue U of M one has $U \cap N \neq 0$. An essential extension M of N is called proper if $N \neq M$. By [1, Proposition 3.2.2], an R-module M is injective if and only if it has no proper essential extension. Let M be an R-module. An injective module E is called an injective envelope of M, if E is an essential extension of M and denoted by $E(M)$. We know that any module M can be embedded into an injective module and injective envelope of M is the minimal embedding. In this case, the corresponding injective module is unique up to isomorphism.

The following lemma is an special case of Lemma 9.8 in [4].
Lemma 2.1. Let R be an integral domain with quotient field K. Then $E(R) \simeq K$.

Proof. At first we show that K is an essential extension of R. If $0 \neq x=\frac{a}{b} \in K$, then $a=b x \in R x \cap R$ and so K is an essential extension of R. It is sufficient to show that K is an injective R-module. Let I be a nonzero ideal of R and $f: I \longrightarrow K$ be an R-module homomorphism. Let a be a nonzero element of I and $f(a)=\frac{c}{d}$. We define $\Phi: R \longrightarrow K$, by $\Phi(x)=\frac{x c}{a d}$, where $x \in R$. Clearly, Φ is an R-module homomorphism. Suppose that $a^{\prime} \in I$ and $f\left(a^{\prime}\right)=\frac{c^{\prime}}{d^{\prime}}$. We have $f\left(a a^{\prime}\right)=a f\left(a^{\prime}\right)=a^{\prime} f(a)$ and hence $\frac{a c^{\prime}}{d^{\prime}}=\frac{a^{\prime} c}{d}$. Therefore, $\Phi\left(a^{\prime}\right)=\frac{a^{\prime} c}{a d}=\frac{a c^{\prime}}{a d^{\prime}}=\frac{c^{\prime}}{d^{\prime}}=f\left(a^{\prime}\right)$. Now by Baer's Criterion, K is an injective R-module and so $E(R) \simeq K$.

An element x of an R-module M is called torsion, if it has a nonzero annihilator in R. Let $t(M)$ be the set of all torsion elements of M. It is clear that if R is an integral domain, then $t(M)$ is a submodule of M. We say that $t(M)$ is the torsion submodule of M. If $t(M)=M$, then M is called a torsion module and if $t(M)=0$, then M is called a torsion-free module. An R-module M is divisible if for every $0 \neq r \in R, r M=M$. It is easy to see that every injective module over an integral domain R is divisible. If M is a divisible R-module, then for every proper submodule N of $M,(N: M)=0$.

Lemma 2.2. Let R be a ring and M be a divisible R-module with $P \in \operatorname{Spec}(M)$. We have
i) If $t(M) \neq M$, then $t(M) \subseteq P$.
ii) P is a divisible R-module.
iii) For every $x \in M-P, \operatorname{ann}(x)=0$.

Proof. i) Let $x \in t(M)$. Then there exists $0 \neq r \in R$ such that $r x=0 \in P$. Since $(P: M)=0, x \in P$. So $t(M) \subseteq P$.
ii) Let $0 \neq r \in R$ and $x \in P$. There exists $y \in M$ such that $r y=x$. Since $(P: M)=0, y \in P$ and we have $x \in r P$. So $r P=P$ and hence P is a divisible R-module.
iii) Let $r \in R, x \in M-P$ and $r x=0$. Since $r x \in P$ and $x \notin P$, $r \in(P: M)=0$ and hence $\operatorname{ann}(x)=0$.

Corollary 2.3. Let R be an integral domain and M be a divisible R-module. Then M is torsion if and only if $\operatorname{Spec}(M)=\emptyset$.

Proof. If $t(M) \neq M$ then by [5, Result 3], $t(M)$ is a prime submodule of M. Now the proof follows by Lemma 2.2(i).

Lemma 2.4. Let R be an integral domain with quotient field K. If M is a torsion-free divisible R-module, then M is isomorphic to a direct sum of copies of K.

Proof. We prove that M is a K-module. Let r be a nonzero element of R and $x \in M$. Since M is torsion-free and $r M=M$, there exists a unique $y \in M$ such that $r y=x$. Then the R-module homomorphism $f_{r}: M \longrightarrow M$ defined by $f_{r}(x)=y$ is well-defined. Now we define $f: K \times M \longrightarrow M$, by $f\left(\frac{r}{s}, x\right)=f_{s}(r x)$. So M is a free K-module and hence M is isomorphic to a direct sum of copies of K.

Recall that a prime ideal p of a ring R is an associated prime of an R-module M, if $p=\operatorname{ann}(x)$ for some nonzero element $x \in M$. The set of all associated primes of an R-module M is denoted by $\operatorname{Ass}(M)$.

Lemma 2.5. Let R be a Noetherian domain and p be a nonzero prime ideal of R. Then $\operatorname{Spec}\left(E\left(\frac{R}{p}\right)\right)=\emptyset$.

Proof. Let $E=E\left(\frac{R}{p}\right)$ and $P \in \operatorname{Spec}(E)$. Suppose that $x \in E-P$. By Lemma 2.2(iii), $\operatorname{ann}(x)=0$ and hence $\{0\} \in \operatorname{Ass}(E)$. But by [1, Lemma 3.2.7], $\operatorname{Ass}(E)=\{p\}$, which is a contradiction. $\operatorname{So} \operatorname{Spec}(E)=$ \emptyset.

For a Noetherian ring R, by [1, Theorem 3.2.8], an injective module can be uniquely written as a direct sum of indecomposable injective modules such that the indecomposable injective R-modules are just the injective envelopes of the cyclic R-modules $\frac{R}{p}$, where $p \in \operatorname{Spec}(R)$. The next Theorem characterizes the prime submodules of an injective module over a Noetherian domain.

Theorem 2.6. Let R be a Noetherian domain with quotient field K. Suppose that M is an injective R-module. Then
i) $M=t(M) \oplus N$, where $N \simeq \oplus_{i \in I} K$, for some index set I.
ii) $\operatorname{Spec}(M)=\emptyset$ or $\operatorname{Spec}(M)=\left\{t(M) \oplus D \mid D \supsetneqq N, D \simeq \oplus_{j \in J} K\right.$, for some index set $J\}$.
$\operatorname{Proof.}$ i) For every $p \in \operatorname{Spec}(R)$, let $M(p)=\oplus E\left(\frac{R}{p}\right)$ such that the number of indecomposable summands in the decomposition of $M(p)$ equals $\operatorname{dim}_{k(p)} \operatorname{Hom}_{R_{p}}\left(k(p), M_{p}\right)$, where $k(p)=\frac{R_{p}}{p R_{p}}$. By Lemma 2.1, we have $M((0)) \simeq \oplus_{x \in X} K$, for some index set X. Let $A=\bigoplus_{0 \neq p \in \operatorname{Spec}(R)} M(p)$, $B=\oplus_{x \in X} K$ and $U=A \oplus B$. By [1, Theorem 3.2.8], we have $M \simeq U$. Now we prove that $t(U)=A \oplus\{0\}$. Let $0 \neq p \in \operatorname{Spec}(R)$. By Lemma 2.5, $\operatorname{Spec}\left(E\left(\frac{R}{p}\right)\right)=\emptyset$ and by Corollary 2.3, $E\left(\frac{R}{p}\right)$ is a torsion R module. So $M(p)$ is a torsion R-module. Therefore $A \oplus\{0\} \subseteq t(U)$. On the other hand, let $y=\left(x_{1}, x_{2}\right) \in t(U)$, where $x_{1} \in A$ and $x_{2} \in B$. Then there exists $0 \neq r \in R$ such that $r y=0$ and hence $r x_{2}=0$. Since B is a torsion-free R-module, we have $x_{2}=0$ and hence $y \in A \oplus\{0\}$. Therefore $t(U)=A \oplus\{0\}$. Thus $U \simeq t(U) \oplus B$. Since M is an injective R-module, U is an injective R-module and hence $t(U)$ is an injective R-module. On the other hand, $t(M) \simeq t(U)$ and hence $t(M)$ is an injective submodule of M. Then there exists a submodule N of M such that $M=t(M) \oplus N$. Therefore N is a torsion-free divisible R-module and by Lemma 2.4, $N \simeq \oplus_{i \in I} K$, for some index set I.
ii) Suppose that $M=t(M)$. Since M is an injective module over an integral domain, then M is divisible and hence by Corollary 2.3, $\operatorname{Spec}(M)=\emptyset$. Now suppose that, $M \neq t(M)$. Let $\Omega=\{t(M) \oplus D \mid D \supsetneqq$ $N, D \simeq \oplus_{j \in J} K$, for some index set $\left.J\right\}$. We show that $\operatorname{Spec}(M)=$ Ω. Assume that $P \in \Omega$. Then there exist an index set J and proper submodule D of N, such that $P=t(M) \oplus D$ and $D \simeq \oplus_{j \in J} K$. Now we show that $P=t(M) \oplus D \in \operatorname{Spec}(M)$. Suppose that $0 \neq r \in R$ and $x=x_{1}+x_{2} \in t(M) \oplus N$ such that $r x \in t(M) \oplus D$. Thus $r x_{2} \in D$. Since D is a prime K-submodule of N, we have $x_{2} \in D$ and hence $x=$ $x_{1}+x_{2} \in P$. We conclude that $P \in \operatorname{Spec}(M)$ and hence $\Omega \subseteq \operatorname{Spec}(M)$. Conversely, suppose that $P \in \operatorname{Spec}(M)$. By Lemma 2.2(i), $t(M) \subseteq P$. Let $D=\left\{x_{2} \in N \mid \exists x_{1} \in t(M)\right.$ such that $\left.x_{1}+x_{2} \in P\right\}$. Clearly D is a proper submodule of N and $t(M) \cap D=\{0\}$. We show that $P=t(M) \oplus D$. By definition of D, we have $P \subseteq t(M) \oplus D$. Conversely, let $x=x_{1}+x_{2} \in t(M) \oplus D$. Then there exists $y \in t(M)$ such that
$y+x_{2} \in P$. We have $\left(x_{1}+x_{2}\right)-\left(y+x_{2}\right)=x_{1}-y \in t(M) \subseteq P$ and hence $x=x_{1}+x_{2} \in P$. So $P=t(M) \oplus D$. Now we prove that $D \in \operatorname{Spec}(N)$. Let $0 \neq r \in R, x \in N$ and $r x \in D$. Then there exists $y \in t(M)$ such that $y+r x \in P$. By Corollary 2.3, $t(M) \in \operatorname{Spec}(M)$ and by Lemma 2.2(ii), $t(M)$ is divisible. So $r t(M)=t(M)$ and hence there exists $z \in t(M)$ such that $r z=y$. Thus $r(z+x) \in P$ and so $z+x \in P$. Therefore $x \in D$ and $D \in S \operatorname{pec}(N)$. Now by Lemma 2.2(ii), D is a proper torsion-free divisible submodule of N and by Lemma 2.4, $D \simeq \oplus_{j \in J} K$, for some index set J.

Example 2.7. Let M be a divisible abelian group. We know that M is a direct sum of copies of $\mathbb{Z}\left(p^{\infty}\right)$, for various primes p and copies of the rational numbers \mathbb{Q}. So we have three cases:

Case (i) $M=\oplus_{p \in \Gamma} \mathbb{Z}\left(p^{\infty}\right)$, where Γ is a subset of prime numbers. Then $\operatorname{Spec}(M)=\emptyset$.

Case (ii) $M=\oplus_{i \in I} \mathbb{Q}$, for some index set I. Then $\operatorname{Spec}(M)=$ $\left\{D \mid D=0\right.$ or $D \simeq \oplus_{j \in J} \mathbb{Q}$, for some index set $\left.J\right\}$.

Case (iii) $M=\left(\oplus_{p \in \Gamma} \mathbb{Z}\left(p^{\infty}\right)\right) \oplus\left(\oplus_{i \in I} \mathbb{Q}\right)$, where Γ is a subset of prime numbers and I is an index set. Then $\operatorname{Spec}(M)=\left\{\left(\oplus_{p \in \Gamma} \mathbb{Z}\left(p^{\infty}\right)\right) \oplus\right.$ $D \mid D \simeq \oplus_{j \in J} \mathbb{Q}$, for some index set $\left.J\right\}$.

In particular, let $M=\mathbb{Z}\left(2^{\infty}\right) \oplus \mathbb{Z}\left(3^{\infty}\right) \oplus \mathbb{Q} \oplus \mathbb{Q}$ and Ω be the set of all $N(a, b)$ such that $N(a, b)=\{(x, y) \mid x, y \in \mathbb{Q}$ and $a x+b y=0\}$, where $a, b \in \mathbb{Q}$ and $(a, b) \neq(0,0)$. We have Ω is the set of all non-trivial \mathbb{Q}-subspaces of \mathbb{Q}-vector space $\mathbb{Q} \oplus \mathbb{Q}$. On the other hand, $t(M)=$ $\mathbb{Z}\left(2^{\infty}\right) \oplus \mathbb{Z}\left(3^{\infty}\right)$ and hence by Theorem 2.6,

$$
\operatorname{Spec}(M)=\left\{\mathbb{Z}\left(2^{\infty}\right) \oplus \mathbb{Z}\left(3^{\infty}\right) \oplus D \mid D \in \Omega\right\} \cup\left\{\mathbb{Z}\left(2^{\infty}\right) \oplus \mathbb{Z}\left(3^{\infty}\right)\right\}
$$

Theorem 2.8. Let R be a ring but not a domain.
i) If M is a divisible R-module, then $\operatorname{Spec}(M)=\emptyset$.
ii) Let R be a Noetherian ring and M be an injective R-module. Then for every $p \in \operatorname{Spec}(R), \operatorname{Spec}\left(E\left(\frac{R}{p}\right)\right)=\emptyset$ if and only if $\operatorname{Spec}(M)=\emptyset$.
$\operatorname{Proof.}$ i) Let $P \in \operatorname{Spec}(M)$. Then $(P: M)=0 \in \operatorname{Spec}(R)$ and hence R is an integral domain, which is a contradiction. Hence $\operatorname{Spec}(M)=\emptyset$.
ii) For every $p \in \operatorname{Spec}(R)$, let $M(p)=\bigoplus E\left(\frac{R}{p}\right)$ where the number of indecomposable summands in the decomposition of $M(p)$ equals $\operatorname{dim}_{k(p)} \operatorname{Hom}_{R_{p}}\left(k(p), M_{p}\right)$, where $k(p)=\frac{R_{p}}{p R_{p}}$. Let $U=\bigoplus_{p \in \operatorname{Spec}(R)} M(p)$. By [1, Theorem 3.2.8], we have $M \simeq U . \operatorname{So} \operatorname{Spec}(M)=\emptyset$ if and
only if $\operatorname{Spec}(U)=\emptyset$. Now we show that for every $p \in \operatorname{Spec}(R)$, $\operatorname{Spec}\left(E\left(\frac{R}{p}\right)\right)=\emptyset$ if and only if $\operatorname{Spec}(U)=\emptyset$. Assume that for every $p \in \operatorname{Spec}(R), \operatorname{Spec}\left(E\left(\frac{R}{p}\right)\right)=\emptyset$. We prove that $\operatorname{Spec}(U)=\emptyset$. Let $P \in \operatorname{Spec}(U)$. Put $\operatorname{Spec}(R)=\left\{p_{s} \mid s \in S\right\}$, for some index set S. Assume that for every $s^{\prime} \in S, A_{s^{\prime}}=\oplus_{s \in S} B_{s}$ such that $B_{s^{\prime}}=M\left(p_{s^{\prime}}\right)$ and for every $s \neq s^{\prime}, B_{s}=0$. Clearly $U=\oplus_{s \in S} A_{s}$. If for every $s \in S$, $A_{s} \subseteq P$ then $P=U$, which is a contradiction. Hence there exists $k \in S$ such that $A_{k} \nsubseteq P$. Now we show that $A_{k} \cap P \in \operatorname{Spec}\left(A_{k}\right)$. Clearly $A_{k} \cap P \neq A_{k}$. Let $x \in A_{k}, r \in R$ and $r x \in A_{k} \cap P$ but $x \notin A_{k} \cap P$. Then $x \in U, r x \in P$ but $x \notin P$. So $r \in(P: U)$ and hence $r U \subseteq P$. Therefore $r A_{k}=r\left(U \cap A_{k}\right) \subseteq P \cap A_{k}$. Thus $P \cap A_{k} \in \operatorname{Spec}\left(A_{k}\right)$. We have $A_{k} \simeq M\left(p_{k}\right)$. Then there exists $Q \in \operatorname{Spec}\left(M\left(p_{k}\right)\right)$ such that $Q \simeq P \cap A_{k}$. Now $M\left(p_{k}\right)=\oplus_{i \in I} E\left(\frac{R}{p_{k}}\right)$, for some index set I. For every $j \in I$, let $C_{j}=\oplus_{i \in I} D_{i}$ such that $D_{j}=E\left(\frac{R}{p_{k}}\right)$ and for every $i \neq j, D_{i}=0$. Clearly $M\left(p_{k}\right)=\oplus_{i \in I} C_{i}$. If for every $i \in I, C_{i} \subseteq Q$, then $M\left(p_{k}\right)=Q$, which is a contradiction. Thus there exist $l \in I$ such that $C_{l} \nsubseteq Q$. Hence $C_{l} \cap Q \in \operatorname{Spec}\left(C_{l}\right)$. Since $C_{l} \simeq E\left(\frac{R}{p_{k}}\right)$, then $\operatorname{Spec}\left(E\left(\frac{R}{p_{k}}\right)\right) \neq \emptyset$, which is a contradiction. Therefore $\operatorname{Spec}(U)=\emptyset$. Conversely, suppose that $\operatorname{Spec}(U)=\emptyset$. We show that for every $p \in \operatorname{Spec}(R), \operatorname{Spec}\left(E\left(\frac{R}{p}\right)\right)=\emptyset$. Let $q \in \operatorname{Spec}(R)$ and $P \in \operatorname{Spec}\left(E\left(\frac{R}{q}\right)\right)$. By definition, $M(q)=\oplus_{i \in I} E\left(\frac{R}{q}\right)$, for some index set I. Let $Q_{j}=\oplus_{i \in I} N_{i}$ such that $N_{j}=P$ and for every $i \in I, i \neq j$, $N_{i}=E\left(\frac{R}{q}\right)$. It is easy to see that $Q_{j} \in \operatorname{Spec}(M(q))$. By the above notation, there exists $s^{\prime} \in S$ such that $A_{s^{\prime}} \simeq M(q)$. So there exists $W \in \operatorname{Spec}\left(A_{s^{\prime}}\right)$ such that $W \simeq Q_{j}$. Let $V=\oplus_{s \in S} E_{s}$ such that $E_{s^{\prime}}=W$ and for every $s \in S, s \neq s^{\prime}, E_{s}=A_{s}$. It is easy to see that $V \in \operatorname{Spec}(U)$, which is a contradiction. The proof is complete.

Acknowledgments

The authors would like to thank the referee for his/her useful suggestions that improved the presentation of this paper.

References

[1] W. Bruns and J. Herzog , Cohen-Macaulay rings, Revised edition, Cambridge University, 1998.
[2] S. Hedayat and R. Nekooei, Characterization of prime submodules of a finitely generated free module over a PID, Houston J. Math. 1(31) (2005), 75-85.
[3] S. Hedayat and R. Nekooei, Prime and radical submodules of free modules over a PID, Houston J. Math. 2(32) (2006), 355-367.
[4] H. Kim, Module-theoretic characterizations of t-linkative domains, Comm. Alg. 5(36), (2008), 1649-1670.
[5] C. P. Lu, Prime submodules of modules, Comment. Math. Univ. Sancti Pauli. 33(1) (1984), 61-69.
[6] R. L. McCasland and M. E. Moore, Prime submodules, Comm. Alg. 20(6) (1992), 1803-1817.
[7] F. Mirzaei and R. Nekooei, On prime submodules of a free module of finite rank over a commutative ring, Comm. Alg. 44 (2016), 3966-3975.
[8] F. Mirzaei and R. Nekooei, Characterization of prime submodules of a free module of finite rank over a valuation domain, J. Korean Math. Soc 54(1) (2017), 59-68.
[9] Y. Tiras and A. Harmanci and P.F. Smith, A Characterization of Prime Submodule, J. Alg. 212(2) (1999), 743-752.

Zahra Pourshafiey

Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran.
E-mail: zhpoorshafiee@gmail.com
Reza Nekooei
Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Postal Code 761694111, Post Box 76169133, Iran.
E-mail: rnekooei@uk.ac.ir

[^0]: Received October 10, 2017. Revised November 20, 2017. Accepted April 9, 2018. 2010 Mathematics Subject Classification. 13C11, 13C99.
 Key words and phrases. Injective modules, Prime submodules, Divisible modules.
 *Corresponding author

