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ON PRIME SUBMODULES OF AN INJECTIVE
MODULE OVER A NOETHERIAN RING

ZAHRA POURSHAFIEY AND REZA NEKOOEI*

Abstract. In this paper, we characterize the prime submodules of
an injective module over a Noetherian ring.

1. Introduction

Throughout this paper all rings are commutative with identity and
all modules are unitary. A proper submodule P of an R-module M is
called prime, if rm € P for some r € R and m € M implies m € P
orr € (P: M), where (P : M) ={r e R|rM C P}. If Pis a
prime submodule of an R-module M then (P : M) is a prime ideal of
R. The set of all prime submodules of an R-module M is denoted by
Spec(M). Prime submodules of a module over a commutative ring have
been studied by many authors, see [5, 6, 9]. Also prime submodules of
a finitely generated free module over a PID were studied in [2, 3]. The
authors in [2], described prime submodules of a finitely generated free
module over a UFD and characterized the prime submodules of a free
module of finite rank over a PID. The authors in [7, 8], extended some
results obtained in [2] to a Dedekind and a valuation domain. In this
paper, we characterize the prime submodules of an injective module over
a Noetherian ring.

2. Main Results

An R-module M is injective if for every R-module monomorphism
f: N — N’ and for every R-module homomorphism g : N — M,
there exists an R-module homomorphism h : N’ — M such that
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hf = g. We know that every injective submodule N of an R-module M
is a direct summand of M. Let N C M be R-modules. We say that M
is an essential extension of N, if for any nonzero R-submodue U of M
one has U N N # 0. An essential extension M of N is called proper if
N # M. By [1, Proposition 3.2.2], an R-module M is injective if and
only if it has no proper essential extension. Let M be an R-module. An
injective module FE is called an injective envelope of M, if E is an essen-
tial extension of M and denoted by E(M). We know that any module
M can be embedded into an injective module and injective envelope of
M is the minimal embedding. In this case, the corresponding injective
module is unique up to isomorphism.

The following lemma is an special case of Lemma 9.8 in [4].

Lemma 2.1. Let R be an integral domain with quotient field K.
Then E(R) ~ K.

Proof. At first we show that K is an essential extension of R. If
0#2=% €K, thena=0br € RrNR and so K is an essential extension
of R. It is sufficient to show that K is an injective R-module. Let I be
a nonzero ideal of R and f : I — K be an R-module homomorphism.
Let a be a nonzero element of I and f(a) = §. We define ® : R — K,
by ®(z) = 27, where x € R. Clearly, ® is an R-module homomorphism.
Suppose that o' € T and f(d') = fl—l,. We have f(ad") = af(a’) = d f(a)
and hence ‘fd—c,, = ‘%C. Therefore, ®(a’) = ‘ZL—;‘; = Z—(‘; = g—: = f(a’). Now by
Baer’s Criterion, K is an injective R-module and so F(R) ~ K. O

An element x of an R-module M is called torsion, if it has a nonzero
annihilator in R. Let ¢(M) be the set of all torsion elements of M. It is
clear that if R is an integral domain, then ¢(M) is a submodule of M.
We say that t(M) is the torsion submodule of M. If ¢(M) = M, then M
is called a torsion module and if t(M) = 0, then M is called a torsion-free
module. An R-module M is divisible if for every 0 #r € R, rM = M.
It is easy to see that every injective module over an integral domain R is
divisible. If M is a divisible R-module, then for every proper submodule
N of M, (N :M)=0.

Lemma 2.2. Let R be a ring and M be a divisible R-module with
P € Spec(M). We have

i) If t(M) # M, then t(M) C P.

ii) P is a divisible R-module.

iii) For every x € M — P, ann(x) = 0.
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Proof. i) Let © € t(M). Then there exists 0 # r € R such that
re=0¢& P. Since (P: M) =0,z € P. Sot(M)C P.

ii) Let 0 # r € R and x € P. There exists y € M such that ry = z.
Since (P : M) =0, y € P and we have z € rP. So rP = P and hence
P is a divisible R-module.

iii) Let r € R, x € M — P and rz = 0. Since rx € P and = ¢ P,
r € (P: M) =0 and hence ann(z) = 0. O

Corollary 2.3. Let R be an integral domain and M be a divisible
R-module. Then M is torsion if and only if Spec(M) = ).

Proof. If t(M) # M then by [5, Result 3|, ¢(M) is a prime submodule
of M. Now the proof follows by Lemma 2.2(i). O

Lemma 2.4. Let R be an integral domain with quotient field K. If
M is a torsion-free divisible R-module, then M is isomorphic to a direct
sum of copies of K.

Proof. We prove that M is a K-module. Let r be a nonzero element
of R and x € M. Since M is torsion-free and rM = M, there exists a
unique y € M such that ry = x. Then the R-module homomorphism
fr + M — M defined by f,(z) = y is well-defined. Now we define
f:KxM— M, by f (g, {L‘) = fs(rz). So M is a free K-module and
hence M is isomorphic to a direct sum of copies of K. O

Recall that a prime ideal p of a ring R is an associated prime of an
R-module M, if p = ann(x) for some nonzero element = € M. The set
of all associated primes of an R-module M is denoted by Ass(M).

Lemma 2.5. Let R be a Noetherian domain and p be a nonzero
prime ideal of R. Then Spec (E (%)) = 0.

Proof. Let E = F (%) and P € Spec(E). Suppose that z € E — P.
By Lemma 2.2(iii), ann(xz) = 0 and hence {0} € Ass(E). But by [1,
Lemma 3.2.7], Ass(E) = {p}, which is a contradiction. So Spec(F) =
0. O

For a Noetherian ring R, by [1, Theorem 3.2.8], an injective module
can be uniquely written as a direct sum of indecomposable injective
modules such that the indecomposable injective R-modules are just the
injective envelopes of the cyclic R-modules %, where p € Spec(R). The
next Theorem characterizes the prime submodules of an injective module
over a Noetherian domain.
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Theorem 2.6. Let R be a Noetherian domain with quotient field K .
Suppose that M is an injective R-module. Then

i) M =t(M)@® N, where N ~ ®;c1 K, for some index set I.
ii) Spec(M) =0 or Spec(M) ={t(M)® D | D S N, D~ ®jc K,
for some index set J}.

Proof. i) For every p € Spec(R), let M(p) = ©F (%) such that
the number of indecomposable summands in the decomposition of M (p)
equals dimyy Hompg,(k(p), M), where k(p) = p}%”p. By Lemma 2.1, we

have M ((0)) ~ @®ex K, for some index set X. Let A = @ M(p),

0#p€e Spec(R)
B =@®,exK and U = A® B. By [1, Theorem 3.2.8], we have M ~ U.
Now we prove that ¢(U) = A @ {0}. Let 0 # p € Spec(R). By Lemma
2.5, Spec <E (%)) = ( and by Corollary 2.3, E <%> is a torsion R-
module. So M(p) is a torsion R-module. Therefore A & {0} C t(U).
On the other hand, let y = (x1,22) € t(U), where z1 € A and x2 € B.
Then there exists 0 # r € R such that ry = 0 and hence rzo = 0. Since
B is a torsion-free R-module, we have zo = 0 and hence y € A @ {0}.
Therefore t(U) = A@ {0}. Thus U ~ ¢t(U) & B. Since M is an injective
R-module, U is an injective R-module and hence ¢(U) is an injective
R-module. On the other hand, ¢(M) ~ ¢(U) and hence t(M) is an in-
jective submodule of M. Then there exists a submodule N of M such
that M = t(M) & N. Therefore N is a torsion-free divisible R-module
and by Lemma 2.4, N ~ @;c7 K, for some index set 1.

ii) Suppose that M = t(M). Since M is an injective module over
an integral domain, then M is divisible and hence by Corollary 2.3,
Spec(M) = (). Now suppose that, M # t(M). Let Q = {¢t(M)®D | D <
N, D ~ @jesK, for some index set J}. We show that Spec(M) =
Q. Assume that P € ). Then there exist an index set J and proper
submodule D of N, such that P = t(M) ® D and D ~ ®;c;K. Now
we show that P = t(M) & D € Spec(M). Suppose that 0 # r € R and
x =21+ x9 € t(M)@® N such that rz € t(M) @ D. Thus rzy € D.
Since D is a prime K-submodule of N, we have x5 € D and hence x =
x1 + x2 € P. We conclude that P € Spec(M) and hence 2 C Spec(M).
Conversely, suppose that P € Spec(M). By Lemma 2.2(i), t(M) C P.
Let D = {9 € N | Jz; € t(M) such that x; + 22 € P}. Clearly
D is a proper submodule of N and t(M) N D = {0}. We show that
P =t(M)@® D. By definition of D, we have P C t(M) @ D. Conversely,
let © = x1 + 2o € t(M) @ D. Then there exists y € ¢(M) such that



On Prime Submodules 223

y+x2 € P. We have (1 +x2) — (y +22) = 21 —y € t(M) C P
and hence x = z1 +x2 € P. So P = t(M) & D. Now we prove that
D € Spec(N). Let 0 #r € R, x € N and rz € D. Then there exists
y € t(M) such that y + rx € P. By Corollary 2.3, t(M) € Spec(M)
and by Lemma 2.2(ii), (M) is divisible. So rt(M) = t(M) and hence
there exists z € t(M) such that rz = y. Thus r(z + ) € P and so
2+ x € P. Therefore z € D and D € Spec(N). Now by Lemma 2.2(ii),
D is a proper torsion-free divisible submodule of N and by Lemma 2.4,
D ~ @ K, for some index set J. O

Example 2.7. Let M be a divisible abelian group. We know that
M is a direct sum of copies of Z(p>°), for various primes p and copies of
the rational numbers Q. So we have three cases:

Case (i) M = @perZ(p™), where I' is a subset of prime numbers.
Then Spec(M) = 0.

Case (ii)) M = @®;c;Q, for some index set I. Then Spec(M) =
{D|D=0orD ~®;c;Q, for some index set J}.

Case (iii) M = (@perZ(p™)) @ (®ic1Q), where T is a subset of prime
numbers and I is an index set. Then Spec(M) = {(DperZ(p™)) ®
D | D ~ &;c;Q, for some index set J}.

In particular, let M = 7Z(2*°) & Z(3*°) @ Q & Q and Q be the set
of all N(a,b) such that N(a,b) = {(z,y) | z,y € Q and ax + by = 0},
where a,b € Q and (a,b) # (0,0). We have Q is the set of all non-trivial
Q-subspaces of Q-vector space Q & Q. On the other hand, t(M) =
Z(2%°) & Z(3*°)and hence by Theorem 2.6,

Spec(M) = {Z(2®°) B Z(3®°) @ D | D € Q} U {Z(2) & Z(3)}.

Theorem 2.8. Let R be a ring but not a domain.
i) If M is a divisible R-module, then Spec(M) = ().
ii) Let R be a Noetherian ring and M be an injective R-module.
Then for every p € Spec(R), Spec (E (%)) = (0 if and only if
Spec(M) = (.
Proof. i) Let P € Spec(M). Then (P : M) =0 € Spec(R) and hence
R is an integral domain, which is a contradiction. Hence Spec(M) = ().

ii) For every p € Spec(R), let M(p) = PG FE (%) where the num-
ber of indecomposable summands in the decomposition of M (p) equals
dimypyHompg,(k(p), Mp), where k(p) = %. Let U = @ M(p).

peSpec(R)
By [1, Theorem 3.2.8], we have M ~ U. So Spec(M) = @ if and
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only if Spec(U) = (. Now we show that for every p € Spec(R),
Spec (E (%)) = () if and only if Spec(U) = . Assume that for ev-

ery p € Spec(R), Spec (E (%)) = (). We prove that Spec(U) = 0.
Let P € Spec(U). Put Spec(R) = {ps|s € S}, for some index set S.
Assume that for every s’ € S, Ay = PsesBs such that By = M(py)
and for every s # s', By = 0. Clearly U = @®4cgAs. If for every s € S,
As; C P then P = U, which is a contradiction. Hence there exists k € .S
such that Ay ¢ P. Now we show that Ay N P € Spec(Ay). Clearly
A, NP # Ay Let x € A, r € Rand rz € Ay, NP but z ¢ AN P.
Then z € U, roe € Pbut x ¢ P. Sor € (P :U) and hence rU C P.
Therefore rAp, = r(U N Ag) € PN Ag. Thus PN A, € Spec(Ag).
We have A ~ M(pyr). Then there exists Q@ € Spec(M(pg)) such

that @ ~ PN Ag. Now M(py) = @ierE <R>, for some index set
Pk

I. For every j € I, let C; = @;erD; such that D; = E(ﬁ) and

for every i # j, D; = 0. Clearly M(py) = @;e;C;. 1If for every
i €I, C; € Q, then M(pr) = @, which is a contradiction. Thus

there exist [ € I such that C; € Q. Hence C; N Q € Spec(Cy). Since
C,~F (%), then Spec <E (p%)) # (), which is a contradiction. There-
fore Spec(U) = 0. Conversely, suppose that Spec(U) = (. We show

that for every p € Spec(R), Spec (E (%)) = (. Let ¢ € Spec(R) and

R
P € Spec <E (%)) By definition, M (q) = ®;c1F (), for some index
q
set 1. Let Q; = @;erN; such that N; = P and for every i € I, i # j,
N; =F (%). It is easy to see that QQ; € Spec(M(q)). By the above

notation, there exists s’ € S such that Ay ~ M(q). So there exists
W € Spec(Ay) such that W ~ Q;. Let V = @4cgE, such that Ey = W
and for every s € S, s # ', Es = A;. Tt is easy to see that V € Spec(U),
which is a contradiction. The proof is complete. ]
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