• Title/Summary/Keyword: prime module

Search Result 111, Processing Time 0.021 seconds

ON SUBMODULES INDUCING PRIME IDEALS OF ENDOMORPHISM RINGS

  • Bae, Soon-Sook
    • East Asian mathematical journal
    • /
    • v.16 no.1
    • /
    • pp.33-48
    • /
    • 2000
  • In this paper, for any ring R with an identity, in order to study prime ideals of the endomorphism ring $End_R$(M) of left R-module $_RM$, meet-prime submodules, prime radical, sum-prime submodules and the prime socle of a module are defined. Some relations of the prime radical, the prime socle of a module and the prime radical of the endomorphism ring of a module are investigated. It is revealed that meet-prime(or sum-prime) modules and semi-meet-prime(or semi-sum-prime) modules have their prime, semi-prime endomorphism rings, respectively.

  • PDF

FULLY PRIME MODULES AND FULLY SEMIPRIME MODULES

  • Beachy, John A.;Medina-Barcenas, Mauricio
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1177-1193
    • /
    • 2020
  • Fully prime rings (in which every proper ideal is prime) have been studied by Blair and Tsutsui, and fully semiprime rings (in which every proper ideal is semiprime) have been studied by Courter. For a given module M, we introduce the notions of a fully prime module and a fully semiprime module, and extend certain results of Blair, Tsutsui, and Courter to the category subgenerated by M. We also consider the relationship between the conditions (1) M is a fully prime (semiprime) module, and (2) the endomorphism ring of M is a fully prime (semiprime) ring.

THE NILPOTENCY OF THE PRIME RADICAL OF A GOLDIE MODULE

  • John A., Beachy;Mauricio, Medina-Barcenas
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.185-201
    • /
    • 2023
  • With the notion of prime submodule defined by F. Raggi et al. we prove that the intersection of all prime submodules of a Goldie module M is a nilpotent submodule provided that M is retractable and M(Λ)-projective for every index set Λ. This extends the well known fact that in a left Goldie ring the prime radical is nilpotent.

ON SUBDIRECT PRODUCT OF PRIME MODULES

  • Dehghani, Najmeh;Vedadi, Mohammad Reza
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.277-285
    • /
    • 2017
  • In the various module generalizations of the concepts of prime (semiprime) for a ring, the question "when are semiprime modules subdirect product of primes?" is a serious question in this context and it is considered by earlier authors in the literature. We continue study on the above question by showing that: If R is Morita equivalent to a right pre-duo ring (e.g., if R is commutative) then weakly compressible R-modules are precisely subdirect products of prime R-modules if and only if dim(R) = 0 and R/N(R) is a semi-Artinian ring if and only if every classical semiprime module is semiprime. In this case, the class of weakly compressible R-modules is an enveloping for Mod-R. Some related conditions are also investigated.

A Design and Implementation of Control Application for Arduino Prime Smart Car

  • Park, Jin-Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.59-64
    • /
    • 2016
  • In this paper, we design and implement an Application based on android platform, which can control arduino Prime Smart Car using Bluetooth communication. This Application consist of Bluetooth communication module, manual mode module, and line-tracer mode module. In the Bluetooth communication module, it checks the on/off status of Smartphone Bluetooth. If Bluetooth status is off, it activates Bluetooth, selects the corresponding device from Bluetooth device list, and connects with a pair. In order to reduce coding time, we implements Bluetooth communication using inherited class from android Bluetooth package. In the manual mode module, it implements six direction moving button and stop button, which can control arduino Prime Smart Car. In the line-tracer mode module, it implements Prime Smart Car with self-driving function using TCRT5000 sensor. And moving button and stop button is disabled.

PRIME M-IDEALS, M-PRIME SUBMODULES, M-PRIME RADICAL AND M-BAER'S LOWER NILRADICAL OF MODULES

  • Beachy, John A.;Behboodi, Mahmood;Yazdi, Faezeh
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1271-1290
    • /
    • 2013
  • Let M be a fixed left R-module. For a left R-module X, we introduce the notion of M-prime (resp. M-semiprime) submodule of X such that in the case M=R, it coincides with prime (resp. semiprime) submodule of X. Other concepts encountered in the general theory are M-$m$-system sets, M-$n$-system sets, M-prime radical and M-Baer's lower nilradical of modules. Relationships between these concepts and basic properties are established. In particular, we identify certain submodules of M, called "primeM-ideals", that play a role analogous to that of prime (two-sided) ideals in the ring R. Using this definition, we show that if M satisfies condition H (defined later) and $Hom_R(M,X){\neq}0$ for all modules X in the category ${\sigma}[M]$, then there is a one-to-one correspondence between isomorphism classes of indecomposable M-injective modules in ${\sigma}[M]$ and prime M-ideals of M. Also, we investigate the prime M-ideals, M-prime submodules and M-prime radical of Artinian modules.

ON FUZZY PRIME SUBMODULES OF FUZZY MULTIPLICATION MODULES

  • Lee, Dong-Soo;Park, Chul-Hwan
    • East Asian mathematical journal
    • /
    • v.27 no.1
    • /
    • pp.75-82
    • /
    • 2011
  • In this paper, we will introduce the concept of fuzzy mulitplication module. We will define a new operation called a product on th family of all fuzzy submodules of a fuzzy mulitplication module. We will define a fuzzy subset of the idealization ring R+M and find some relations with the product of fuzzy submodules and product of fuzzy ideals of the idealization ring R+M. Some properties of weakly fuzzy prime submoduels and fuzzy prime submodules which are de ned by T.K.Mukherjee M.K.Sen and D.Roy will be introduced. We will investigate some properties of fuzzy prime submodules of a fuzzy multiplication module.

ON PRIME SUBMODULES OF A FINITELY GENERATED PROJECTIVE MODULE OVER A COMMUTATIVE RING

  • Nekooei, Reza;Pourshafiey, Zahra
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.729-741
    • /
    • 2019
  • In this paper we give a full characterization of prime submodules of a finitely generated projective module M over a commutative ring R with identity. Also we study the existence of primary decomposition of a submodule of a finitely generated projective module and characterize the minimal primary decomposition of this submodule. Finally, we characterize the radical of an arbitrary submodule of a finitely generated projective module M and study submodules of M which satisfy the radical formula.

ON DISTINGUISHED PRIME SUBMODULES

  • Cho, Yong-Hwan
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.3
    • /
    • pp.493-498
    • /
    • 2000
  • In this paper we find some properties of distinguished prime submodules of modules and prove theorems about the dimension of modules.

  • PDF

ON WEAKLY S-PRIME SUBMODULES

  • Hani A., Khashan;Ece Yetkin, Celikel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1387-1408
    • /
    • 2022
  • Let R be a commutative ring with a non-zero identity, S be a multiplicatively closed subset of R and M be a unital R-module. In this paper, we define a submodule N of M with (N :R M)∩S = ∅ to be weakly S-prime if there exists s ∈ S such that whenever a ∈ R and m ∈ M with 0 ≠ am ∈ N, then either sa ∈ (N :R M) or sm ∈ N. Many properties, examples and characterizations of weakly S-prime submodules are introduced, especially in multiplication modules. Moreover, we investigate the behavior of this structure under module homomorphisms, localizations, quotient modules, cartesian product and idealizations. Finally, we define two kinds of submodules of the amalgamation module along an ideal and investigate conditions under which they are weakly S-prime.