• Title/Summary/Keyword: primary wave velocity

Search Result 32, Processing Time 0.023 seconds

Experimental Study of Spray Characteristics of Liquid jet in Cross-flow (횡단류를 이용한 액체제트의 분무 및 분열 특성 실험)

  • Ko Jung-Bin;Lee Kwan-Hyung;Moon Hee-Jang;Koo Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.155-158
    • /
    • 2005
  • The spray characteristics of liquid jet minted in subsonic cross-flow were investigated numerically and experimentally. The behaviors of column, penetration and breakup of plain liquid jet in non-swirling cross-flow of air have been studied. Numerical and physical models are based on a modified KIVAII code. The primary atomization is represented by a wave model based on the KH(Kelvin-Helmholtz) instability that is generated by a high interface relative velocity between the liquid and gas flows. CCD camera has been utilized in oder to capture the spray trajectory. The nozzle diameter was 0.5 mm and its L/D ratios were between 1 and 5. Numerical and experimental results indicate that the breakup point is delayed by increasing gas momentum ratio, the penetration decreases by increasing Weber number and the turbulent or nonturbulent liquid jet is obtained at different L/D ratio.

  • PDF

Comprehensive Evaluation of Results of Ground Response analysis Round Robin Test (지반응답해석 Round Robin Test 결과 종합적 분석 연구)

  • Park, Du-Hee;Yoon, Jong-Ku;Park, Young-Ho;Ahn, Chang-Yoon;Kim, Jae-Yeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.334-344
    • /
    • 2007
  • This paper performed a comprehensive evaluation of the results of the 2007 Ground Response Analysis Round Robin Test, at which 14 institutions and individuals participated. The submitted results showed significant discrepancies. The main reason for this difference has been attributed to the dispersion in the estimated shear wave velocity profiles and dynamic soil curves. It is therefore concluded that accurate evaluation of the material properties is of primary importance for reliable estimation of the ground vibration. Evaluation of the effect of the analysis method showed that the equivalent linear analysis overestimates the peak ground acceleration, but overall the results are similar to a total stress nonlinear analysis. However, the total and effective stress nonlinear analyses show distinct discrepancies, the effective stress analyses consistently resulting in a lower response due to the development of the excess pore water pressure and thus softer response.

  • PDF

ANALYSIS OF WAVE VELOCITY FOR TEMPERATURE PROPERGATION IN A MECHANICAL FACE SEAL (기계평면시일에서 온도전파를 위한 파속도의 이론적해석)

  • 김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1987.06a
    • /
    • pp.50-56
    • /
    • 1987
  • A mechanical face seal is most commonly used to seal liquids and gases at various speeds, pressures and temperatures. The primary seal ring is in sliding contact with the seal seat and as a result heat in the vicinity of the interface is generated. Local temperatures at points along the circumferential direction will fluctuate as asperities on the surfaces pass. This kind of fluctuation of temperature has been investigated to take place. This may lead to the hot spots phenomenon between the contacting asperities. Sibley and Allen showed photographic evidence of systemically moving hot spots in the contact zone. The appearance of such a temperature disturbance has been attributed to a kind of thermoelastic instabilities between two surfaces: This involves a feedback loop which comprises localized elevation of frictional heating, resultant localized thermal bulding, localized pressure increase as the result of the bulging and futher elevation of frictional heating as the result of the pressure increase. The heating of hot spots will be continued until the expanded material due to the frictional heating is worn off. Therefore to predict the speed of temperature propagation into the body is essential to the analysis of heat transfer on the edge of the seal.

  • PDF

Peak ground acceleration attenuation relationship for Mazandaran province using GEP algorithm

  • Ahangari, Hamed Taleshi;Jahani, Ehsan;Kashir, Zahra
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.403-410
    • /
    • 2018
  • The choice of attenuation relationships is one of the most important parts of seismic hazard analysis as using a different attenuation relationship will cause significant differences in the final result, particularly in near distances. This problem is responsible for huge sensibilities of attenuation relationships which are used in seismic hazard analysis. For achieving this goal, attenuation relationships require a good compatibility with the target region. Many researchers have put substantial efforts in their studies of strong ground motion predictions, and each of them had an influence on the progress of attenuation relationships. In this study, two attenuation relationships are presented using seismic data of Mazandaran province in the north of Iran by Genetic Expression Programming (GEP) algorithm. Two site classifications of soil and rock were considered regarding the shear wave velocity of top 30 meters of site. The quantity of primary data was 93 records; 63 of them were recorded on rock and 30 of them recorded on soil. Due to the shortage of records, a regression technique had been used for increasing them. Through using this technique, 693 data had been created; 178 data for soil and 515 data for rock conditions. The Results of this study show the observed PGA values in the region have high correlation coefficients with the predicted values and can be used in seismic hazard analysis studies in the region.

An Analytical Study on the Gas-Solid Two Phase Flows

  • Sun, Jianguo;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.356-363
    • /
    • 2012
  • This paper addresses an analytical study on the gas-solid two phase flows in a nozzle. The primary purpose is to get recognition into the gas-solid suspension flows and to investigate the particle motion and its influence on the gas flow field. The present study is the primal step to comprehend the gas-solid suspension flow in the convergent-divergent nozzle. This paper try to made a development of an analytical model to study the back pressure ratio, particles loading and the particle diameter effect on gas-solid suspension flow. Mathematical model of gas-solid two phase flow was developed based on the single phase flow models to solve the quasi-one-dimensional mass, momentum equations to calculate the steady pressure field. The influence of particles loading and particle diameter is analyzed. The results obtained show that the suspension flow of smaller diameter particles has almost same trend as that of single phase flow using ideal gas as working fluid. And the presence of particles will weaken the strength of the shock wave; the bigger particle will have larger slip velocity with gas flow. The thrust coefficient is found to be higher for larger particles/gas loading or back pressure ratio, but it also depends on the ambient pressure.

  • PDF

Critical earthquake loads for SDOF inelastic structures considering evolution of seismic waves

  • Moustafa, Abbas;Ueno, Kohei;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.1 no.2
    • /
    • pp.147-162
    • /
    • 2010
  • The ground acceleration measured at a point on the earth's surface is composed of several waves that have different phase velocities, arrival times, amplitudes, and frequency contents. For instance, body waves contain primary and secondary waves that have high frequency content and reach the site first. Surface waves are composed of Rayleigh and Love waves that have lower phase velocity, lower frequency content and reach the site next. Some of these waves could be of more damage to the structure depending on their frequency content and associated amplitude. This paper models critical earthquake loads for single-degree-of-freedom (SDOF) inelastic structures considering evolution of the seismic waves in time and frequency. The ground acceleration is represented as combination of seismic waves with different characteristics. Each seismic wave represents the energy of the ground motion in certain frequency band and time interval. The amplitudes and phase angles of these waves are optimized to produce the highest damage in the structure subject to explicit constraints on the energy and the peak ground acceleration and implicit constraints on the frequency content and the arrival time of the seismic waves. The material nonlinearity is modeled using bilinear inelastic law. The study explores also the influence of the properties of the seismic waves on the energy demand and damage state of the structure. Numerical illustrations on modeling critical earthquake excitations for one-storey inelastic frame structures are provided.

One Dimensional Seismic Response Analysis on Sub-ground of Architectural Heritage in Seoul, Korea (서울지역 주요 문화재 하부 지반에 대한 일차원 지진응답해석)

  • Jeon, Seongkon;Kim, Dukmoon;Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.29-36
    • /
    • 2014
  • Under the situation that the seismic vulnerability are a worsening problem in many world's megacities, the disaster preparedness including earthquake hazards is a matter of primary concern in the capital city of Korea, Seoul. Especially, because it is hard to move or dismantle the architectural heritages, the mitigation of earthquake damages is potentially more difficult than other structures. Moreover, in order to decide the proper preparedness plan against future earthquakes, it is very important to understand how soils pass the seismic waves to architectural heritages. In this paper, therefore, the ground condition and depth of bedrock was investigated by the MASW-method at heritages located in Seoul. Then one-dimensional seismic response analysis was conducted based on the distribution of shear wave velocity. As the major result of analyses, peak acceleration, site amplification factor and natural period are proposed in each site for recurrence period.

Development of near field Acoustic Target Strength equations for polygonal plates and applications to underwater vehicles (근접장에서 다각 평판에 대한 표적강도 이론식 개발 및 수중함의 근거리 표적강도 해석)

  • Cho, Byung-Gu;Hong, Suk-Yoon;Kwon, Hyun-Wung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1062-1073
    • /
    • 2007
  • Acoustic Target Strength (TS) is a major parameter of the active sonar equation, which indicates the ratio of the radiated intensity from the source to the re-radiated intensity by a target. In developing a TS equation, it is assumed that the radiated pressure is known and the re-radiated intensity is unknown. This research provides a TS equation for polygonal plates, which is applicable to near field acoustics. In this research, Helmholtz-Kirchhoff formula is used as the primary equation for solving the re-radiated pressure field; the primary equation contains a surface (double) integral representation. The double integral representation can be reduced to a closed form, which involves only a line (single) integral representation of the boundary of the surface area by applying Stoke's theorem. Use of such line integral representations can reduce the cost of numerical calculation. Also Kirchhoff approximation is used to solve the surface values such as pressure and particle velocity. Finally, a generalized definition of Sonar Cross Section (SCS) that is applicable to near field is suggested. The TS equation for polygonal plates in near field is developed using the three prescribed statements; the redection to line integral representation, Kirchhoff approximation and a generalized definition of SCS. The equation developed in this research is applicable to near field, and therefore, no approximations are allowed except the Kirchhoff approximation. However, examinations with various types of models for reliability show that the equation has good performance in its applications. To analyze a general shape of model, a submarine type model was selected and successfully analyzed.

  • PDF

Study of the Flow Characteristics of Supersonic Coaxial Jets (초음속 동축제트의 유동특성에 관한 연구)

  • Lee, Gwon-Hui;Gu, Byeong-Su;Kim, Hui-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1702-1710
    • /
    • 2001
  • Supersonic coaxial jets are investigated numerically by using the axisymmetric, Wavier-Stokes equations which are solved using a fully implicit finite volume method. Three different kinds of coaxial nozzles are employed to understand the flow physics involved in the supersonic coaxial jets. Two convergent-divergent supersonic nozzles are designed to have the same Mach number 2.0, and used to compare the coaxial jet flows with those discharging from one constant-area nozzle. The impingement angle of the annular jets are varied. The primary pressure ratio is changed in the range from 2.0 to 10.0 and the assistant jet ratio from 1.0 to 3.0. The results obtained show that the fluctuations of the total pressure and Mach number along the jet axis are much higher in the constant-area nozzle than those in the convergent-divergent nozzles, and the constant-area nozzle lead to higher total pressure losses, compared with the convergent-divergent nozzles. The assistant jets from the annular nozzle affect the coaxial jet flows within the distance less than about ten times the nozzle throat diameter, but beyond it the coaxial jet is conical with self-similar velocity profiles. Increasing both the primary jet pressure ratio and the assistant jet pressure ratio produces a longer coaxial jet core.

Effects of Acupuncture Stimulation on the Radial artery's Pressure Pulse Wave in Healthy Young Participants: Protocol for a prospective, single-Arm, Exploratory, Clinical Study

  • Shin, Jae-Young;Ku, Boncho;Kim, Tae-Hun;Bae, Jang Han;Jun, Min-Ho;Lee, Jun-Hwan;Kim, Jaeuk U.
    • Journal of Pharmacopuncture
    • /
    • v.19 no.3
    • /
    • pp.197-206
    • /
    • 2016
  • Introduction: This study aims to investigate the effects of acupuncture stimulation on the radial artery's pressure pulse wave, along with various hemodynamic parameters, and to explore the possible underlying mechanism of pulse diagnosis in healthy participants in their twenties. Methods and analysis: This study is a prospective, single-arm, exploratory clinical study. A total of 25 healthy participants, without regard to gender, in their twenties will be recruited by physicians. Written informed consent will be obtained from all participants. The participants will receive acupuncture once at ST36 on both sides. The radial arterial pulse waves will be measured on the left arm of the subjects by using an applicable pulse tonometric device (KIOM-PAS). On the right arm (appearing twice), electrocardiogram (ECG), photoplethysmogram (PPG), respiration and cardiac output (CO) signals, will be measured using a physiological data acquisition system (Biopac module), while the velocity of blood flow, and the diameter and the depth of the blood vessel will be measured using an ultrasonogram machine on the right arm (appearing twice). All measurements will be conducted before, during, and after acupuncture. The primary outcome will be the spectral energy at high frequencies above 10 Hz ($SE_{10-30Hz}$) calculated from the KIOM-PAS device signal. Secondary outcomes will be various variables obtained from the KIOM-PAS device, ECG, PPG, impedance cardiography modules, and an ultrasonogram machine. Discussion: The results of this trial will provide information regarding the physiological and the hemodynamic mechanisms underlying acupuncture stimulation and clinical evidence for the influence of acupuncture on the pressure pulse wave in the radial artery. Ethics and dissemination: This study was approved by the Institutional Review Board (IRB) of Kyung Hee University's Oriental Medical Center, Seoul, Korea (KOMCIRB-150818-HR-030). The study findings will be published in peer-reviewed journals and presented at national and international conferences. Trial registration number: This trial was registered with the Clinical Research Information Service (CRIS) at the Korea National Institute of Health (NIH), Republic of Korea (KCT0001663), which is a registry in the World Health Organization's (WHO's) Registry Network.