• Title/Summary/Keyword: primary energy use

Search Result 236, Processing Time 0.026 seconds

A Study on Greenhouse Gas Inventories for Regional Governments (A Case Study of Jeonbuk Province) (지자체 온실가스 인벤토리 구축연구 - 전라북도 사례)

  • Jang, Nam-Jung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.565-572
    • /
    • 2009
  • Greenhouse gas(GHG) inventories and basic strategies for Jeonbuk regional government were established to reduce greenhouse gas emissions. The method to construct GHG inventories of Jeonbuk followed the 'Revised IPCC 1996 Guidelines'which was used for the 'Third National Communication of the Republic of Korea under UNFCCC'. Korean government could use primary energy consumption for the energy industries section in the national GHG inventories. However, regional governments should use secondary energy consumption (included electricity consumption) for the energy industries section for their GHG inventories because they could not control the emission of energy transformation section. In the result of Jeonbuk GHG inventories in 2006, carbon dioxide($CO_2$) emissions from fuel combustion covered 87.1% of total emissions. Methane($CH_4$), carbon dioxide($CO_2$) from other sections, nitrous oxide($N_2O$) and F-gas(HFCs, PFCs, $SF_6$) accounted for 8.1, 2.2, 1.6 and 1.0% of total emissions, respectively. The sectional emission decreased in the order of the energy(88.0%), agriculture(7.6%), waste(2.3%) and industrial processes(2.1%) section. The energy industries section that contained electricity consumption was the most dominant emission source in the energy section. F-gas consumption, rice cultivation and waste incineration were main emission sources in the industrial processes, agriculture and waste section, respectively. In this study, basic directions of each section were established by the results of Jeonbuk GHG inventories in 2006.

Influence of the density of states and overlap integral on impact ionization rate for silicon (상태밀도와 overlap integral이 실리콘내 전자의 임팩트이온화율에 미치는 영향)

  • 정학기;유창관;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.394-397
    • /
    • 1999
  • Impact ionization, which is a kind of a carrier-carrier interaction process occurring in a semiconductor under the influence of a high electric field, is necessary to analyse carrier transport properties. Since the parabolic or nonparabolic E-k relation is different from real band structure in high energy range, exact model of impart ionization have been presented using full band I-k relation and Fermi's golden rule. We have investigated relation of density of states, energy band structure and overlap integral. We make use of empirical pseudopotential method in order to calculate energy band structure of silicon, tetrahedron method in order to calculate density of states. We know density of states very depends on energy band structure and overlap integral depends on the primary electron energy.

  • PDF

The Development of the Solar Tracking System with High Accuracy by using LabVIEW (LabVIEW를 활용한 고정밀도 태양추적장치 개발)

  • Oh, Seung-Jin;Cho, Yil-Sik;Lee, Yoon-Joon;Chun, Won-Gee
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.31-36
    • /
    • 2009
  • There have been many solar tracking systems developed for the high accuracy in solar tracking. One of the key components of any motion control system is software. LabVIEW offers an ideal combination of flexibility, ease-of-use and well-integration with other I/O pieces for developing solar tracking system. Real-time solar positions which vary with GPS's data are used simultaneously to control the solar tracker by a chain of operating modes between the open and closed loops. This paper introduces a step by step procedure for the fabrication and performance assessment of a precision solar tracking system. The system developed in this study consists of motion controllers, motor drives, step-motors, feedback devices and application. CRD sensors are applied for the solar tracking system which play a primary role in poor conditions for tracking due to a gear backlash and a strong wind. Mini-dish was used as a concentrator for collecting sun light. The solar position data, in terms of azimuth and elevation, sunrise and sunset times was compared with those of KASI(Korea Astronomy & Space Science Institute). The results presented in this paper demonstrate the accuracy of the present system in solar tracking and utilization.

  • PDF

Evaluation of Fatigue Life on Alloy 617 Base Metal and Alloy 617/Alloy 617 Weld Joints under Low Cycle Fatigue Loading (저사이클피로 하중하의 Alloy 617 모재와 용접부재에 대한 피로 수명 평가)

  • Dewa, Rando Tungga;Kim, Seon-Jin;Kim, Woo-Gon;Kim, Min-Hwan
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.122-128
    • /
    • 2014
  • Generally, the mechanical components and structures are joined by many welding techniques, and therefore the welded joints are inevitable in the construction of structures. The Alloy 617 was initially developed for high temperature applications above $800^{\circ}C$. It is often considered for use in aircraft and gas turbines, chemical manufacturing components, and power generation structures. Especially, the Alloy 617 is the primary candidate for construction of intermediate heat exchanger (IHX) on a very high temperature reactor (VHTR) system. In the present paper, the low cycle fatigue (LCF) life of Alloy 617 base metal (BM) and the gas tungsten arc welded (GTAWed) weld joints (WJ) are evaluated by using the previous experimental results under strain controlled LCF tests. The LCF tests have been performed at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. The LCF lives for the BM and WJ have been evaluated from the Coffin-Manson and strain energy based life methods. For both the BM and WJ, the LCF lives predicted by both Coffin-Manson and strain energy based life methods was found to well coincide with the experimental data.

Power Generation and Control System Using Differential Pressure of District Heating Pipeline in a Substation (지역난방 사용자기계실 내 열수송관 차압을 이용한 발전 및 제어 기술)

  • Kim, Kyung Min;Park, Sung Yong;Oh, Mun Sei
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.90-96
    • /
    • 2017
  • When the hot water is supplied through the district heating (DH) pipeline, a pressure differential control valve (PDCV) protects the DH user equipment from the high pressure DH water and helps to supply DH water to long distance. It also controls the temperature and adjust the pressure in the main district heating pipeline. However, cavitation occurs in PDCV due to the use of high pressure DH water. It causes frequent failures and many problems. It also causes energy loss and complaints to both operators and users. In order to solve these problems, we will introduce the energy saving technology to replace the primary side PDCV with hydraulic turbine, convert the differential pressure into electricity, and utilize electricity as the power of the secondary side pump.

The System of Radiation Dose Assessment and Dose Conversion Coefficients in the ICRP and FGR

  • Kim, Sora;Min, Byung-Il;Park, Kihyun;Yang, Byung-Mo;Suh, Kyung-Suk
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.424-435
    • /
    • 2016
  • Background: The International Commission on Radiological Protection (ICRP) recommendations and the Federal Guidance Report (FGR) published by the U.S. Environmental Protection Agency (EPA) have been widely applied worldwide in the fields of radiation protection and dose assessment. The dose conversion coefficients of the ICRP and FGR are widely used for assessing exposure doses. However, before the coefficients are used, the user must thoroughly understand the derivation process of the coefficients to ensure that they are used appropriately in the evaluation. Materials and Methods: The ICRP provides recommendations to regulatory and advisory agencies, mainly in the form of guidance on the fundamental principles on which appropriate radiological protection can be based. The FGR provides federal and state agencies with technical information to assist their implementation of radiation protection programs for the U.S. population. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR is reviewed in this study. Results and Discussion: A thorough understanding of their background is essential for the proper use of dose conversion coefficients. The FGR dose assessment system was strongly influenced by the ICRP and the U.S. National Council on Radiation Protection and Measurements (NCRP), and is hence consistent with those recommendations. Moreover, the ICRP and FGR both used the scientific data reported by Biological Effects of Ionizing Radiation (BEIR) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as their primary source of information. The difference between the ICRP and FGR lies in the fact that the ICRP utilized information regarding a population of diverse races, whereas the FGR utilized data on the American population, as its goal was to provide guidelines for radiological protection in the US. Conclusion: The contents of this study are expected to be utilized as basic research material in the areas of radiation protection and dose assessment.

Combustion Characteristics of Ammonia-Gasoline Dual-Fuel System in a One liter Engine (1리터급 엔진을 이용한 암모니아-가솔린 혼소 성능 특성)

  • Jang, Jinyoung;Woo, Youngmin;Yoon, Hyung Chul;Kim, Jong-Nam;Lee, Youngjae;Kim, Jeonghwan
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.1-7
    • /
    • 2015
  • An ammonia fuel system is developed and applied to a 1 liter gasoline engine to use ammonia as primary fuel. Ammonia is injected separately into the intake manifold in liquid phase while gasoline is also injected as secondary fuel. As ammonia burns 1/6 time slower than gasoline, the spark ignition is needed to be advanced to have better combustion phasing. The test engine showed quite high variation in the power output to lead high increase in THC emission with large amount of ammonia, that is, higher than 0.7 ammonia-gasoline fuel ratios.

System dynamics simulation of the thermal dynamic processes in nuclear power plants

  • El-Sefy, Mohamed;Ezzeldin, Mohamed;El-Dakhakhni, Wael;Wiebe, Lydell;Nagasaki, Shinya
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1540-1553
    • /
    • 2019
  • A nuclear power plant (NPP) is a highly complex system-of-systems as manifested through its internal systems interdependence. The negative impact of such interdependence was demonstrated through the 2011 Fukushima Daiichi nuclear disaster. As such, there is a critical need for new strategies to overcome the limitations of current risk assessment techniques (e.g. the use of static event and fault tree schemes), particularly through simulation of the nonlinear dynamic feedback mechanisms between the different NPP systems/components. As the first and key step towards developing an integrated NPP dynamic probabilistic risk assessment platform that can account for such feedback mechanisms, the current study adopts a system dynamics simulation approach to model the thermal dynamic processes in: the reactor core; the secondary coolant system; and the pressurized water reactor. The reactor core and secondary coolant system parameters used to develop system dynamics models are based on those of the Palo Verde Nuclear Generating Station. These three system dynamics models are subsequently validated, using results from published work, under different system perturbations including the change in reactivity, the steam valve coefficient, the primary coolant flow, and others. Moving forward, the developed system dynamics models can be integrated with other interacting processes within a NPP to form the basis of a dynamic system-level (systemic) risk assessment tool.

Hybrid Spectrum Sensing System for Machine-to-Machine(M2M) (사물지능통신(M2M)을 위한 하이브리드 스펙트럼 센싱 시스템)

  • Kim, Nam-Sun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.2
    • /
    • pp.184-191
    • /
    • 2017
  • This paper presents cluster based hybrid spectrum sensing system for M2M services. For each cluster, secondary nodes within the transmission radius of the primary node use hard decision method through local spectrum sensing to determine whether the primary node exists. And the other secondary nodes and the secondary nodes having poor radio channel conditions judge the existence of the primary node through the soft decision method of the values obtained by performing the cooperative spectrum sensing. In the proposed hybrid spectrum sensing system, the performance according to the number of secondary nodes is analyzed with the conventional system over Rayleigh fading channel. As the number of cooperative sensing users increased to 2, 3 and 4, the cluster error probability decreased to 0.5608, 0.5252 and 0.4001 at SNR of -10[dB] respectively. Since the proposed system uses less overhead traffic, it is found that it is more effective in terms of frequency usage than the conventional system using soft decision-soft decision and soft decision-hard decision methods.

Effect of curing condition on strength of geopolymer concrete

  • Patil, Amol A.;Chore, H.S.;Dodeb, P.A.
    • Advances in concrete construction
    • /
    • v.2 no.1
    • /
    • pp.29-37
    • /
    • 2014
  • Increasing emphasis on energy conservation and environmental protection has led to the investigation of the alternatives to customary building materials. Some of the significant goals behind understaking such investigations are to reduce the greenhouse gasemissions and minimize the energy required formaterial production.The usage of concrete around the world is second only to water. Ordinary Portland Cement (OPC) is conventionally used as the primary binder to produce concrete. The cement production is a significant industrial activity in terms of its volume and contribution to greenhouse gas emission. Globally, the production of cement contributes at least 5 to 7 % of $CO_2$. Another major problem of the environment is to dispose off the fly ash, a hazardous waste material, which is produced by thermal power plant by combustion of coal in power generation processes. The geopolymer concrete aims at utilizing the maximum amount of fly ash and reduce $CO_2$ emission in atmosphere by avoiding use of cement to making concrete. This paper reports an experimental work conducted to investigate the effect of curing conditions on the compressive strength of geopolymer concrete prepared by using fly ash as base material and combination of sodium hydroxide and sodium silicate as alkaline activator.