• Title/Summary/Keyword: primary degrees of freedom

Search Result 28, Processing Time 0.072 seconds

Dynamic Condensation using Iterative Manner for Structural Eigenproblem with Nonproportional Damping (비비례 감쇠 구조의 고유치 문제에 대한 반복적인 동적 축소법)

  • Cho, Maeng-Hyo;Choi, Dong-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.342-349
    • /
    • 2008
  • A selection method of primary degrees of freedom in dynamic condensation for nonproportional damping structures is proposed. Recently, many dynamic condensation schemes for complex eigenanalysis have been applied to reduce the number of degrees of freedom. Among them, iterative scheme is widely used because accurate eigenproperties can be obtained by updating the transformation matrix in every iteration. However, a number of iteration to enhance the accuracy of the eigensolutions may have a possibility to make the computation cost expensive. This burden can be alleviated by applying properly selected primary degrees of freedom. In this study, which method for selection of primary degrees of freedom is best fit for the iterative dynamic condensation scheme is presented through the results of a numerical experiment. The results of eigenanalysis of the proposed method is also compared to those of other selection schemes to discuss a computational effectiveness.

  • PDF

Transformation of Dynamic Loads into Equivalent Static Loads by the Selection Scheme of Primary Degrees of Freedom (주자유도 선정 기법에 의한 동하중의 등가 정하중으로의 변환)

  • Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1316-1321
    • /
    • 2003
  • The systematic method to construct equivalent static load from the given dynamic load is proposed in the present study. Previously reported works to construct equivalent static load were based on ad hoc methods. They may results in unreliable structural design. The present study proposes a selection scheme of degrees of freedom(d.o.f) for imposing the equivalent static loads. The d.o.fs are selected by Two-level condensation scheme(TLCS). TLCS consists of two two-steps. The first step is the energy estimation in element-level and the second step consists of the traditional sequential elimination precudure. Through several numerical examples, the efficiency and reliability of proposed scheme is verified.

  • PDF

Transformation of Dynamic Loads into Equivalent Static Loads by the Selection Scheme of Primary Degrees of Freedom (주자유도 선정 기법에 의한 동하중의 등가 정하중으로의 변환)

  • Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.57-63
    • /
    • 2007
  • The systematic method to construct equivalent static load from a given dynamic load is proposed in the present study. Previously reported works to construct equivalent static load were based on ad hoc methods. Due to improper selection of loading position, they may results in unreliable structural design. The present study proposes the employment of primary degrees of freedom for imposing the equivalent static loads. The degrees of freedom are selected by two-level condensation scheme with reliability and efficiency. In several numerical examples, the efficiency and reliability of the proposed scheme is verified by comparison displacement for equivalent static loading and dynamic loading at the critical time.

Higher Order Zig-Zag Theory for Composite Shell under Thermo-mechanical load (열, 기계 하중을 고려한 지그재그 고차 복합재 쉘 이론)

  • Oh Jin-Ho;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.217-224
    • /
    • 2005
  • A higher order zig-zag shell theory is developed to refine the predictions of the mechanical and thermal behaviors partially coupled. The in-plane displacement fields are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field through the thickness. Smooth parabolic distribution through the thickness is assumed in the out-of-plane displacement in order to consider transverse normal deformation and stress. The layer-dependent degrees of freedom of displacement fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses. Thus the proposed theory has only seven primary unknowns and they do not depend upon the number of layers. In the description of geometry and deformation of shell surface, all rigorous exact expressions are used. Through the numerical examples of partially coupled analysis, the accuracy and efficiency of the present theory are demonstrated. The present theory is suitable in the predictions of deformation and stresses of thick composite shell under mechanical and thermal loads combined.

  • PDF

Time Integration in Reduced System Constructed by Two-level Condensation Scheme (임의의 하중 하에서 축소시스템 구성을 통한 구조물의 동적 거동 연구)

  • 김현기;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.19-26
    • /
    • 2004
  • This study constructs the reduced system by two-level condensation scheme. This scheme consists of two steps. First step selects the candidate area for the primary degrees of freedom by energy estimation in element level. In the second step, the primary degrees of freedom are selected by the sequential elimination scheme. The efficiency and reliability of this scheme is shown through the prediction of eigenvalues of a few numerical examples. Time integration in the reduced system can save the computing time effectively. The well-constructed reduced system can present the accurate behavior of the structure under arbitrary dynamic loads so much as the global system. Through the numerical example, the efficiency and reliability of the proposed scheme will be demonstrated.

  • PDF

Positioning and vibration suppression for multiple degrees of freedom flexible structure by genetic algorithm and input shaping

  • Lin, J.;Chiang, C.B.
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.347-365
    • /
    • 2014
  • The main objective of this paper is to develop an innovative methodology for the vibration suppression control of the multiple degrees-of-freedom (MDOF) flexible structure. The proposed structure represented in this research as a clamped-free-free-free truss type plate is rotated by motors. The controller has two loops for tracking and vibration suppression. In addition to stabilizing the actual system, the proposed feedback control is based on a genetic algorithm (GA) to seek the primary optimal control gain for tracking and stabilization purposes. Moreover, input shaping is introduced for the control scheme that limits motion-induced elastic vibration by shaping the reference command. Experimental results are presented, demonstrating that, in the control loop, roll and yaw angles track control and elastic mode stabilization. It was also demonstrated that combining the input shaper with the proportional-integral-derivative (PID) feedback method has been shown to yield improved performance in controlling the flexible structure system. The broad range of problems discussed in this research is valuable in civil, mechanical, and aerospace engineering for flexible structures with MDOM motion.

Dynamic analysis for delaminated composites based on finite element (다중 층간분리부가 내재된 복합재 평판의 유한요소 진동해석)

  • 오진호;조맹효;김준식
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.143-146
    • /
    • 2003
  • A finite element based on the efficient higher order zig-zag theory with multiple delaminations Is developed to refine the predictions of frequency and mode shapes. Displacement field through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. The layer-dependent degrees of freedom of displacement fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions including delaminated interfaces as well as free hounding surface conditions of transverse shear stresses. Thus the proposed theory is not only accurate but also efficient. This displacement field can systematically handle the number, shape, size, and locations of delaminations. Throught the dynamic version of variational approach, the dynamic equilibrium equations and variationally consistent boundary conditions are obtained. Through the natural frequency analysis and time response analysis of composite plate with multiple delaminations, the accuracy and efficiency of the present finite element are demonstrated. The present finite element is suitable in the predictions of the dynamic response of the thick composite plate with multiple delaminations.

  • PDF

HIGHER ORDER ZIG-ZAG PLATE THEORY FOR COUPLED THERMO-ELECTRIC-MECHANICAL SMART STRUCTURES (열-기계-전기 하중이 완전 연계된 지능 복합재 평판의 지그재그 고차이론)

  • 오진호;조맹효
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.114-117
    • /
    • 2001
  • A higher order zig-zag plate theory is developed to refine accurately predict fully coupled of the mechanical, thermal, and electric behaviors. Both the displacement and temperature fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. Linear zig-zag form is adopted in the electric field. The layer-dependent degrees of freedom of displacement and temperature fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses and transverse heat flux The numerical examples of coupled and uncoupled analysis are demonstrated the accuracy and efficiency of the present theory. The present theory is suitable for the predictions of fully coupled behaviors of thick smart composite plate under mechanical, thermal, and electric loadings.

  • PDF

Study on the efficient dynamic system condensation (동적 해석의 효율적 축소 기법에 관한 연구)

  • Baek, Sung-Min;Cho, Meang-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.631-636
    • /
    • 2007
  • Eigenvalue reduction schemes approximate the lower eigenmodes that represent the global behavior of the structures. In the, we proposed a two-level condensation scheme(TLCS) for the construction of a reduced system. In first step, the of candidate elements by energy estimation, Rayleigh quotient, through Ritz vector calculation, and next, the primary degrees of freedom is selected by sequential elimination from the degrees of freedom connected the candidate elements in the first step. In the present study, we propose TLCS combined with iterative improved reduced system(IIRS) to increase accuracy of higher modes intermediate range. Also, it possible to control the accuracy of the eigenvalues and eigenmodes of the reduced system. Numerical examples demonstrate performance of proposed method.

  • PDF

Construction of the reduced system by two-level scheme and time integration in the reduced system under arbitrary loading (2단계 축소기법에 의한 축소시스템의 구성과 동하중에 의한 구조물의 동적 거동에 관한 연구)

  • Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.453-458
    • /
    • 2004
  • This study proposes a new two-level condensation scheme for the construction of a reduced system. In the first step, the candidate area is selected for the construction of the reduced system by energy estimation in element-level. In the second step, primary degrees of freedom are selected by sequential elimination from the candidate degrees of freedom linked to the selected elements. Numerical examples demonstrate that the proposed method saves the computational cost effectively and provides a reduced system which predicts the eigenvalues accurately. Moreover, the well-constructed reduced system can present the reliable behavior of the structure under arbitrary dynamic loads comparing to that of global system. Time integration in a reduced system can save the computing time remarkably. Through a few numerical examples, the efficiency and reliability of the proposed scheme are verified.

  • PDF