• 제목/요약/키워드: primary crystallization

Search Result 55, Processing Time 0.024 seconds

Development of Lamella Morphology in Poly(ethylene terephthalate)/Polycarbonate Blends

  • Lee, Jong-Kwan;Im, Jeong-Eon;Lee, Kwang-Hee
    • Macromolecular Research
    • /
    • v.12 no.2
    • /
    • pp.172-177
    • /
    • 2004
  • We have studied the lamella-level morphology of poly(ethylene terephthalate) (PET)/polycarbonate (PC) blends using small-angle X-ray scattering (SAXS). Measurements were made as a function of the holding time in the melt. We determined the morphological parameters at the lamellar level by correlation function analysis of the SAXS data. An increased amorphous layer thickness was identified in the blend, indicating that some PC was incorporated into the interlamellar regions of PET during crystallization. The blend also exhibits a larger lamella crystalline thickness (l$\sub$c/) than that of pure PET. A possible reason for the increase in l$\sub$c/ is that the inclusion of the PC molecules in the interlamellar regions causes an increase in the surface free energy of folding. At the early stage of isothermal crystallization, we observed a rapid drop in the value of l$\sub$c/ in the blend; this finding indicates that a relatively large fraction of secondary crystals form during the primary crystallization. In contrast, the value of l$\sub$c/ for the sample that underwent a prolonged holding time increased with time in the secondary crystallization-dominant regime; this observation suggests that the disruption of chain periodicity, which results from transesterification between the two polymers, favors the development of fringed micellar crystals that have larger values of l$\sub$c/ rather than the development of normal chain-folded crystals.

Microstructural Characteristics of SiC Particle Reinforced Aluminum Alloy Composite by Squeeze Casting (Squeeze Casting에 의한 SiC 입자강화 Al합금기 복합재료의 미세조직 특성)

  • Kim, Sug-Won;Woo, Kee-Do;Han, Sang-Won
    • Journal of Korea Foundry Society
    • /
    • v.15 no.6
    • /
    • pp.566-573
    • /
    • 1995
  • In this study, the microstructural characteristics such as primary silicon, eutectic silicon, $SiC_p$ dispersion behavior, compound amount and Si solubility in $Al/SiC_p$ composite fabricated by the squeeze casting under various conditions were investigated systematically. As applied pressure(MPa) increases, cooling rate and compound amount are increased. In gravity casting, the cooling rate of hypereutectic composite is slower than of hypoeutectic composite by exothermic reaction of primary Si crystallization. But the cooling rate of hypereutectic composite is faster than that of hypoeutectic composite fabricated by same applied pressure, because amount of primary Si crystallization in hypereutectic composite was decreased, on the contrary, primary ${\alpha}-Al$ in hypoeutetic composite was increased due to increase of Si solubility in matrix by applied pressure. The crystalized primary silicon in hypereutectic composite fabricated by squeeze casting become more fine than that in non-pressure casting This is because mush zone became narrow due to increase of Si content of eutectic composition by pressure and time for growth of primary silicon got shorter according to applied pressure. It is turned out that eutectic temperature and liquidus are decreased by the increasing of squeeze pressure in all the composite due to thermal unstability of matrix owing to increasing of Si solubility in matrix by the increasing of applied pressure, as indicated in thermal anaiysis(DSC) results.

  • PDF

Synthesis of Spherical ZrO2 Powders by Thermal Hydrolysis and Hydrothermal Crystallization (열가수분해 및 수열결정화에 의한 구형 ZrO2 분말의 합성)

  • Cho, Churl-Hee;Jin, Ming-Ji;Choi, Jae-Young;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.420-426
    • /
    • 2002
  • $ZrO_2$, $Y_2O_3$-doped $ZrO_2$ and CaO-doped $ZrO_2$ powders were prepared by hydrothermal crystallizing spherical $ZrO_2$ gel which had been synthesized by thermal hydrolysis reaction. After the hydrothermal crystallization process, the formed crystallized powders sustained its original spherical shape and had the mean particle size of $0.4{\mu}m$. The particles were composed of about 10nm sized primary particles. The agglomeration strength between the primary particles appears very weak considering that the spherical particles were broken into the primary particles during the pressing process. The particle shape, size, phase fraction and dopant content were analyzed and crystallization mechanism of spherical gel was discussed.

Synthesis and Non-Isothermal Crystallization Behavior of Poly (ethylene-co-1,4-butylene terephthalate)s

  • Jinshu Yu;Deri Zhou;Weimin Chai;Lee, Byeongdu;Le, Seung-Woo;Jinhwan Yoon;Moonhor Ree
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.25-35
    • /
    • 2003
  • A series of random poly(ethylene-co-1,4-butylene terephthalate)s (PEBTs), as well as poly(ethylene terephthalate) (PET) and poly(1,4-butylene terephthalate) (PBT), were synthesized by the bulk polycondensation. Their composition, molecular weight, and thermal properties were determined. All the copolymers are crystallizable, regardless of the compositions, which may originate from both even-atomic-numbered ethylene terephthalate and butylenes terephthalate units that undergo inherently crystallization. Non-isothermal crystallization exotherms were measured over the cooling rate of 2.5-20.0 K/min by calorimetry and then analyzed reasonably by the modified Avrami method rather than the Ozawa method. The results suggest that the primary crystallizations in the copolymers and the homopolymers follow a heterogeneous nucleation and spherulitic growth mechanism. However, when the cooling rate increases and the content of comonomer unit (ethylene glycol or 1,4-butylene glycol) increases, the crystallization behavior still becomes deviated slightly from the prediction of the modified Avrami analysis, which is due to the involvement of secondary crystallization and the formation of relatively low crystallinity. Overall, the crystallization rate is accelerated by increasing cooling rate but still depended on the composition. In addition, the activation energy in the non-isothermal crystallization was estimated.

Synthesis and Compaction Behavior of Monodispersed 3Y-ZrO2 Spherical Agglomerates

  • Choi, Hong-Goo;Yong, Seok-Min;Kim, Do Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.434-438
    • /
    • 2013
  • Monodispersed 3Y-$ZrO_2$ spherical agglomerates were synthesized by thermal hydrolysis process followed by crystallization processes (hydrothermal treatment and calcination). The crystallization process affected the properties of the final particles, such as the primary particle size, the agglomeration state, and the fraction of $ZrO_2$ monoclinic phase. The hydrothermal treated spherical particles were porous microstructures (weak agglomerates) composed of small primary particles with a size of 14 nm, but the calcined spherical particles had a dense microstructure due to the hard aggregation between primary particles. While the calcined particles had a low green density due to the hard aggregation, hydrothermal treated ones were soft agglomerates and had a deflection point at 50 MPa due to the rearrangement of secondary spherical particles and the filling of the interstices with the primary particles. Finally, the green density of hydrothermally treated $ZrO_2$ particles was 58% at 200 MPa.

Growth of High Uniform Polycrystalline Grain on the Highly Ordered Porous Anodic Alumina (다공질 양극산화 피막을 이용한 고균일 다결정 살리콘의 성장)

  • Kim, Jong-Yeon;Han, Jin-Woo;Kim, Young-Hwan;Kim, Byoung-Yong;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.375-375
    • /
    • 2007
  • In the conventional crystallization method, thepoly-Si TFTs show poor device-to-device uniformity because of the random location of the grain boundaries. However, our new crystallization method introduced in this paper employed substrate-embedded seeds on the highly ordered anodic alumina template to control both the location of seeds and the number of grain boundaries intentionally. In the process of excimer laser crystallization (ELC), a-Si film deposited on the anodic alumina by low pressure chemical vapor deposition (LPCVD) is transformed into fine poly-Si grains by explosive crystallization (XC) prior to primary melting. At the higher energy density, the film is nearly completely melted and laterally grown by super lateral growth (SLG) from remained small part of the fine poly-Si grains as seeds at the Si/anodic alumina interface. Resultant grain boundaries have almost linear functions of the number of seeds in concavities of anodic alumina which have a constant spacing. It reveals the uniformity of. device can be enhanced prominently by controlling location and size of pores which contains fine poly~Si seeds under artificial anodizing condition.

  • PDF

Differentiation Trend of Rare Earth Elements of the Skaergaard Intrusion (Skaergaard 암체의 희토류의 분화경향)

  • Yun D. Jang
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.617-625
    • /
    • 2001
  • The Skaergaard intrusion is widely considered a type example of a strongly fractionated, layered intrusion that has undergone extensive in situ igneous differentiation. The Intrusion, therefore, should be a good locality for modeling trace element vriation in a closed system. Previous studios (Haskin and Haskin, 1968; Faster et al., 1974), however, have suggested thats the rare earth elements in whole rocks and mineeral separates from the Intrusion did not fellow the expected trend for closed system crystatllization. Trace element modeling using published distribution coefficients, modal abundances of the coexisting minerals, and the concentration of trace elements In whole rocks and mineral separates from the Skaergaard Intrusion, reveals that the rare earth elements were significantly Influenced by the crystallization of abundant apatite in the Layered Series suring the final stages of crystallization. The results of trace element modeling also suggcsts that apatite, which appears sporadically in the UBS, is not a primary liquidus phase in these samples as previously suggested (Naslund, 1984) but an interstitial phase that (lid not directly effect trace element abundances In the evolving magma As the Skaergaard magma coaled convection, or convected as small Isolated cells during the final stages of differentiation, an elebated $P_{H2O}$ Induced by accumulation of volatile elements near the roof of the magma chamber ingibited or delayed the precipitation of primary apatite in the UBS If the Skaergaard differentiation Is modeler assuming primary apatite crystallization In the upper par of the LS where abundant modal apatite is present, and only late stage crystallization of apatite In the UBS where apatite Is less abundant, rare earth elements abundances follow a closed system variation trend. These results rule but any differentiation model for the Skaergaard Intrusion that Includesvolumetrically significant injections or discharges of magma Into or out of the chamber during the final 20% of the crystallization history.

  • PDF

The Effect of Thermal History Induced by Melt Spinning on the Mechanical Properties of Polylactic Acid Fibers (용융 가공에 의해 발현된 열 이력이 폴리락트산 섬유의 기계적 물성에 미치는 영향)

  • 천상욱;김수현;김영하;강호종
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.656-663
    • /
    • 2000
  • The Effects of thermal history during the melt spinning process on the mechanical properties and crystallinity of polylactic acid (PLLA) fibers have been studied. Thermal history applied on PLLA during the melt process caused the decrease of number-average molecular weights and this resulted in the lowering of orientation and crystallinity in PLLA fibers. As a result, the longer applied thermal history, the less tensile strength and modulus, and the higher elongation at break. It was also found that primary factor for controlling crystallinity of PLLA fiber was the stress induced crystallization while the thermal induced crystallization had a little effect on the crystallinity of PLLA fibers. However, the thermal induced crystallization turn out to be important in the crystallinity developed by annealing of PLLA fibers.

  • PDF

Effects of Ca on the Refinement of Microstructure in Aluminum B390 Alloy (알루미늄 B390합금의 조직미세화에 미치는 Ca의 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.22 no.5
    • /
    • pp.257-264
    • /
    • 2002
  • Effects of Ca content on the refinement of primary Si of Aluminum B390 alloy have been examined. Ca was found to have an effect on the refinement of primary Si particle. Primary Si particle size has been refined as Ca content of the melts decreased and cooling rate increased. A control of Ca content by the addition of $CuCl_2$ to the melt was the most efficient in the refinement of primary Si particles. The minimum size of primary Si particles in this study was $15.0\;{\mu}m$ when a residual content of Ca element in the alloy was 5ppm, Primary Si particle size was refined as primary Si crystallization temperature increased, which was attributed to the decrease of Ca content in the melts.

A Study on recycling of waste concrete for ${PO}_4^{3-}$-P removal contained in livestock wastewater (축산폐수에 함유된 ${PO}_4^{3-}$-P의 제거를 위한 폐콘크리트의 재활용에 관한 연구)

  • 김은호;박진식;성낙창;이영형;신남철;전기일
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.227-231
    • /
    • 1999
  • This study was conducted to investigate the removal characteristics of $PO_4^{3-}-P$ contained in livestock wastewater using waste concrete. With small particle size, increased dosage and temperature of water, $PO_4^{3-}-P$ was well removed by waste concrete.$PO_4^{3-}-P$ was removed by adsorption reaction in low pH of the primary phase, but the crystallization reaction predominated for increasing pH with passed time. As a result of adapting the adsorption isotherm equation, $PO_4^{3-}-P$ removal was more affected by the crystallization reaction than the adsorption reaction. In the SEM micrograph, there was no evident change on the waste concreter surface. Particle size was plate-phase before reaction but appeared a dense form to progress in the crystallization reaction.

  • PDF