Development of Lamella Morphology in Poly(ethylene terephthalate)/Polycarbonate Blends

  • Lee, Jong-Kwan (Center for Advanced Functional Polymers, School of Chemical Science and Engineering, Inha University) ;
  • Im, Jeong-Eon (Center for Advanced Functional Polymers, School of Chemical Science and Engineering, Inha University) ;
  • Lee, Kwang-Hee (Center for Advanced Functional Polymers, School of Chemical Science and Engineering, Inha University)
  • Published : 2004.04.01

Abstract

We have studied the lamella-level morphology of poly(ethylene terephthalate) (PET)/polycarbonate (PC) blends using small-angle X-ray scattering (SAXS). Measurements were made as a function of the holding time in the melt. We determined the morphological parameters at the lamellar level by correlation function analysis of the SAXS data. An increased amorphous layer thickness was identified in the blend, indicating that some PC was incorporated into the interlamellar regions of PET during crystallization. The blend also exhibits a larger lamella crystalline thickness (l$\sub$c/) than that of pure PET. A possible reason for the increase in l$\sub$c/ is that the inclusion of the PC molecules in the interlamellar regions causes an increase in the surface free energy of folding. At the early stage of isothermal crystallization, we observed a rapid drop in the value of l$\sub$c/ in the blend; this finding indicates that a relatively large fraction of secondary crystals form during the primary crystallization. In contrast, the value of l$\sub$c/ for the sample that underwent a prolonged holding time increased with time in the secondary crystallization-dominant regime; this observation suggests that the disruption of chain periodicity, which results from transesterification between the two polymers, favors the development of fringed micellar crystals that have larger values of l$\sub$c/ rather than the development of normal chain-folded crystals.

Keywords

References

  1. Macromolecules v.29 S.Talibuddin;L.Wu;J.Runt;J.S.Lin https://doi.org/10.1021/ma960508f
  2. Macromolecules v.31 H.L.Chen;L.J.Li;T.L.Lin https://doi.org/10.1021/ma9715740
  3. Macromolecules v.31 H.L.Chen;M.S.Hsiao https://doi.org/10.1021/ma980700c
  4. J. Polym. Sci.;Polym. Phys. Ed. v.37 F.Yeh;B.S.Hsiao;B.Chu;B.B.Sauer;E.A.Flexman https://doi.org/10.1002/(SICI)1099-0488(19991101)37:21<3115::AID-POLB20>3.0.CO;2-I
  5. Macromolecules v.19 N.Inaba;K.Sato;S.Suzuki;T.Hashimoto https://doi.org/10.1021/ma00160a036
  6. Macromolecules v.21 N.Inaba;T.Yamada;S.Suzuki;T.Hashimoto https://doi.org/10.1021/ma00180a021
  7. Polymer v.39 H.L.Chen;J.C.Hwang;J.M.Yang;R.C.Wang https://doi.org/10.1016/S0032-3861(98)00178-5
  8. Macromolecules v.24 S.Nojima;K.Sato;T.Ashida https://doi.org/10.1021/ma00004a021
  9. Polymer v.38 M.Okamoto;T.Kotaka https://doi.org/10.1016/S0032-3861(96)00695-7
  10. J. Polym. Sci.;Polym. Phys. Ed. v.38 H.J.Bang;J.K.Lee;K.H.Lee https://doi.org/10.1002/1099-0488(20001015)38:20<2625::AID-POLB20>3.0.CO;2-0
  11. Euro. Polym. J. (submitted) J.K.Lee;J.E.Im;K.H.Lee
  12. J. Appl. Polym. Sci. v.81 M.Garcia;J.I.Eguiazabal;J.Nazabal https://doi.org/10.1002/app.1421
  13. Polymer v.43 Y.Kong;J.N.Hay https://doi.org/10.1016/S0032-3861(01)00772-8
  14. Polymer v.30 S.Buchner;D.Wiswe;H.G.Zachmann https://doi.org/10.1016/0032-3861(89)90018-9
  15. J. Polym. Sci.;Polym Phys. Ed. v.18 G.R.Strobl;M.Schneider https://doi.org/10.1002/pol.1980.180180614
  16. Polymer v.37 R.K.Verma;V.Velikov;R.G.Kander;H.Marand;B.Chu;B.S.Hsiao https://doi.org/10.1016/S0032-3861(96)00387-4
  17. Macromolecules v.29 R.Verma;H.Marand;B.Hsiao https://doi.org/10.1021/ma951727o
  18. Macromolecules v.30 W.Wang;J.M.Schultz;B.S.Hsiao https://doi.org/10.1021/ma970092l
  19. J. Polym. Sci.;Polym. Phys. Ed. v.40 J.K.Lee;H.J.Bang;K.H.Lee https://doi.org/10.1002/polb.10095
  20. Polym. Eng. Sci. v.24 E.Martuscelli https://doi.org/10.1002/pen.760240809
  21. Polymer v.32 B.S.Hsiao;I.Y.Chang;B.B.Sauer
  22. Polym. Sci. A-2 v.8 R.S.Stein;W.J.Chu https://doi.org/10.1002/pol.1970.160080709
  23. J. Polym. Sci.;Polym. Phys. Ed. v.12 D.Y.Yoon;R.S.Stein https://doi.org/10.1002/pol.1974.180120410
  24. J. Macromol. Sci. Phys. B v.12 A.Lilaonitkul;J.C.West;S.L.Cooper
  25. Macromolecules v.15 M.Matsuo;K.Geshi;A.Moriyama;C.Sawatari https://doi.org/10.1021/ma00229a037
  26. Makromol. Chem. v.182 G.Elsner;H.G.Zachmann;J.R.Milch https://doi.org/10.1002/macp.1981.021820235
  27. Macromolecules v.28 A.M.Jonas;T.P.Russell;D.Y.Yoon https://doi.org/10.1021/ma00129a005
  28. Macromolecules v.26 K.N.Kruger;H.G.Zachmann https://doi.org/10.1021/ma00071a035
  29. ACS PMSE Proc. v.79 R.A.Phillips;Z.G.Wang;B.S.Hsiao
  30. Macromolecules v.32 A.Alizadeh;L.Richardson;J.Xu;S.McCartney;H.Marand;Y.W.Cheung;S.Chum https://doi.org/10.1021/ma990669u