Differentiation Trend of Rare Earth Elements of the Skaergaard Intrusion

Skaergaard 암체의 희토류의 분화경향

  • Yun D. Jang (Department of Geological Sciences and Environmental Studies, State University of New York at Binghamton, Binghamtion, NY 13902, USA)
  • Published : 2001.12.01

Abstract

The Skaergaard intrusion is widely considered a type example of a strongly fractionated, layered intrusion that has undergone extensive in situ igneous differentiation. The Intrusion, therefore, should be a good locality for modeling trace element vriation in a closed system. Previous studios (Haskin and Haskin, 1968; Faster et al., 1974), however, have suggested thats the rare earth elements in whole rocks and mineeral separates from the Intrusion did not fellow the expected trend for closed system crystatllization. Trace element modeling using published distribution coefficients, modal abundances of the coexisting minerals, and the concentration of trace elements In whole rocks and mineral separates from the Skaergaard Intrusion, reveals that the rare earth elements were significantly Influenced by the crystallization of abundant apatite in the Layered Series suring the final stages of crystallization. The results of trace element modeling also suggcsts that apatite, which appears sporadically in the UBS, is not a primary liquidus phase in these samples as previously suggested (Naslund, 1984) but an interstitial phase that (lid not directly effect trace element abundances In the evolving magma As the Skaergaard magma coaled convection, or convected as small Isolated cells during the final stages of differentiation, an elebated $P_{H2O}$ Induced by accumulation of volatile elements near the roof of the magma chamber ingibited or delayed the precipitation of primary apatite in the UBS If the Skaergaard differentiation Is modeler assuming primary apatite crystallization In the upper par of the LS where abundant modal apatite is present, and only late stage crystallization of apatite In the UBS where apatite Is less abundant, rare earth elements abundances follow a closed system variation trend. These results rule but any differentiation model for the Skaergaard Intrusion that Includesvolumetrically significant injections or discharges of magma Into or out of the chamber during the final 20% of the crystallization history.

Skaergaard 암체는 광범한 in situ 화성분화작용을 격은 층상관입암의 대표적인 예로 널리 알려져 있다. 따라서 이 암체는 폐쇄계에서 미량원소변이를 modeling 할 수 있는 적지가 될 것이다. 그러나, 기존의 연구에 의하면 본 암체의 전암 및 광물의 회토류는 폐쇄계로서의 예상된 경향을 보이지 않는다(Haskin and Haskin, 1968; Paster et al., 1974). 발표된 분배계수, 공존광물들의 mode,그리고 전암 및 광물의 미량원소함량을 사용한 미량원소modeling에 의하면 Skaergaard 암체의 희토류는 분화후기에 일어난 광범한 인회석 결정작용에 크게 영향을 받았음을 보여준다. 미량원소modeling은 Upper Border Series에서 간헐적으로 나타나는 인회석이 기존에 주장되어 온 바와 같은 liquldus상이 아니라 진화하는 magma의 미량원소함량에는 영향을 끼칠 수 없는 interstitial phase임을 시사한다. 분화작용 말기에 Skaerganrd 마그마가 대류를 멈추거나 소규모로 대류를 할 때, 마그마 암장의 상부에 축적되는 휘발성분에 기인한 증가된 $PH_2$O가 인회석이 UBS에서 정출 되는 것을 방해하였을 것이다. 이와 같은 인회석의 특성을 고려해서 Skaergaard분화작용을 modeling하면 희토류는 폐쇄계로서의 예상된 경향을 따른다 이와 같은 결과는 최종 20% 분화작용기간 중에 양적으로 상당한 양의 마그마의 주입이나 분출을 수반하는 그 어떤 Skaergaard 암체의 분화model도 배격한다.

Keywords

References

  1. J. Res. US. Geol. Surv. v.4 Behavior of trace elements during magmatic processes-a summary of theoretical models and their applications Arth, J.C
  2. PhD Thesis University of Oxford England A Further Petrological and Chemical Investigation of the Upper Part of the Skaergaard Intrusion, East Greenland Douglas, J.A.V.
  3. Geochim. Cosmochim. Acta. v.39 The oxidation state of europium as an indicator of oxygen fugacity. Drake, M.J.
  4. Geochim. Cosmochim. Acta. v.39 Partition of Sr, Ba, Y, $Eu^{2+}$, $Eu^{3+}$, and other REE between plagioclase feldspar and magmatic liquid: An experimental study Drake, M.J;Weill, D.F.
  5. Geochim. Cosmochim. Acta. v.58 Mineral/matrix partition coefficients for orthopyroxene. plagioclase, and olivine in basaltic to andesitic systems: A combined analytical and experimental study Dunn, T.;Sen, C.
  6. Trans Amer Geophys Union v.74 Apatite saturation revisited: The effects of water in a metaaluminous haplodacite melt Hanchar, J.M.;Watson, E.B.
  7. Contrib. Mineral. Petrol. v.113 Experimental Cpx/melt partitioning of 24 trace elements Hart, S.R.;Dunn, T.
  8. Geochim. Cosmochim. Acta. v.32 Rare-earth elements in the Skaergaard intrusion Haskin, L.A;Haskin, M.A
  9. Inorganic Geochemistry Henderson P.
  10. J. Petrol. v.30 Petrology of the Marginal Border Series of the Skaergaad intrusion Hoove, J.D.
  11. Contrib. Mineral. Petrol. v.95 The differentiation of the Skaergaard intrusion Hunter, R.H;Sparks, R.S.J
  12. Contrib. Mineral. Petrol. v.104 A reply to comments on The differentiation of the Skaergaard intrusion Hunter, R.H;Sparks, R.S.J
  13. PhD Dissertation State University of New York at Binghamton Petrological,Geochemical, and Mineralogical Variations in the Skaergaard Intrusion, East Greenland Jang, Y.D.
  14. Contrib. Mineral. Petrol. v.140 Major and Trace Element Composition of Skaergaard Plagioclase, Geochemical Evidence for Changes in Magma Dynamics During the Final Stage of Crystallization of the Skaergaard Intrusion Jang, Y.D;Naslund, H.R
  15. Amer. Mineral. A Revised Major and Trace Element Differentiation Trend for Pyroxenes in the Skaergaard Intrusion Jang, Y.D;Naslund, H.R
  16. J. Petrol. v.30 The Skaergaard Layered Series: Ⅰ Structure and average compositions McBirney, A.R
  17. J. Petrol. in review The Skaergaard Layered Series: Part Ⅳ. Excluded Trace Elements McBirney, A.R.
  18. Contrib. Mineral. Petrol. v.104 The differentiation of the Skaergaard intrusion McBirney. A.R;Naslund, H.R
  19. J. Petrol. v.37 Kiglapait mineralogy Ⅲ: Olivine compositions and Rayleigh fractionation models Morse, S.A
  20. Ameri. J. Sci. v.276 Fluorine, chlorine, and OH-bearing minerals in the Skaergaard intrusion Nash, W.P.
  21. Geochim. Cosmochim. Acta v.49 Partition coefficients for trace elements in silicic magmas Nash, W.P;Crescraft, H.R.
  22. Wash. Yearbook v.76 Mineralogical variations in the upper part of the Skaergaard intrusion, East Greenland Naslund, H.R
  23. PhD Dissertation University of Oregon Part ⅠPetrology of the Upper Border Group of the Skaerggard instrusion, East Greenland; and Part Ⅱ An experimental study of liquid immiscibility in iron-bearing silicate melts Naslund, H.R
  24. J. Petrol. v.25 Petrology of the Upper Border Series of the Skaergaard intrusion Naslund, H.R.
  25. Layered Intrusion Mechanisms of formation of igneous layering Naslund, H.R;McBirney, A.R;R G Cawthorn(ed.)
  26. Geochim. Cosmochim. Acta. v.38 The behavior of some trace elements during solidification of the Skaergaard Layered Series Paster, T.P;Schauwecker, D.S;Haskin, L.A
  27. Contrib. Mineral. Petrol. v.69 Petrogenetic implications of Ti Zr Y and Nb variations in volcanic rocks Pearce, J.A;Norry, M.J
  28. Using geochemical data: evaluation, presentation, interpretation Rollinson, H.R
  29. Contrib. Mineral. Petrol. v.110 Isotopic studies of processes in mafic magma chambers:2 The Skaergaard intrusion, East Greenland Stewart, B.W;DePaolo, D.J
  30. J. Petrol. in review The differentiation trends of iron and manganese-rich olivine and pyroxene in the Skaergaard intrusion Tegner, C.
  31. Contrib. Mineral. Petrol. v.117 The effect of phosphorous on the iron redox ratio,viscosity,and density of an evolved ferro-basalt Toplis, M.J;Dingwell, D.B;Libourel, G.
  32. Layered Igneous Rocks Wager, L.R;Brown, G.M.
  33. Medd Om Groenland v.105 Geological Investigations in East Greenland Part ⅢThe Petrology of the Skaergaard Intrusion, Kangerdlugssuaq, East Greenland Wager, L.R;Deer, W.A.
  34. Geophys. Research Letter v.6 Apatite saturation in basic to intermediate magmas Watson, E.B.
  35. Earth Planet. Sci. Let. v.56 Apatite/liquid partition coefficients for the rare earth elements and strontium Watson, E.B;Green, T.H.