• 제목/요약/키워드: primal problem

검색결과 77건 처리시간 0.023초

제한용량이 있는 설비입지결정 문제에 대한 적응형 평균치교차분할 알고리즘 (Adaptive Mean Value Cross Decomposition Algorithms for Capacitated Facility Location Problems)

  • 김철연;최경현
    • 대한산업공학회지
    • /
    • 제37권2호
    • /
    • pp.124-131
    • /
    • 2011
  • In this research report, we propose a heuristic algorithm with some primal recovery strategies for capacitated facility location problems (CFLP), which is a well-known combinatorial optimization problem with applications in distribution, transportation and production planning. Many algorithms employ the branch-and-bound technique in order to solve the CFLP. There are also some different approaches which can recover primal solutions while exploiting the primal and dual structure simultaneously. One of them is a MVCD (Mean Value Cross Decomposition) ensuring convergence without solving a master problem. The MVCD was designed to handle LP-problems, but it was applied in mixed integer problems. However the MVCD has been applied to only uncapacitated facility location problems (UFLP), because it was very difficult to obtain "Integrality" property of Lagrangian dual subproblems sustaining the feasibility to primal problems. We present some heuristic strategies to recover primal feasible integer solutions, handling the accumulated primal solutions of the dual subproblem, which are used as input to the primal subproblem in the mean value cross decomposition technique, without requiring solutions to a master problem. Computational results for a set of various problem instances are reported.

PRIMAL-DUAL 내부점법에 관한 연구 (A Study on Primal-Dual Interior-Point Method)

  • Seung-Won An
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권5호
    • /
    • pp.801-810
    • /
    • 2004
  • The Primal-Dual Interior-Point (PDIP) method is currently one of the fastest emerging topics in optimization. This method has become an effective solution algorithm for large scale nonlinear optimization problems. such as the electric Optimal Power Flow (OPF) and natural gas and electricity OPF. This study describes major theoretical developments of the PDIP method as well as practical issues related to implementation of the method. A simple quadratic problem with linear equality and inequality constraints

Karmarkar's & Primal-Dual 내부점 알고리즘의 해의 수렴과정의 안정성에 관한 고찰 (A Study of stability for solution′s convergence in Karmarkar's & Primal-Dual Interior Algorithm)

  • 박재현
    • 산업경영시스템학회지
    • /
    • 제21권45호
    • /
    • pp.93-100
    • /
    • 1998
  • The researches of Linear Programming are Khachiyan Method, which uses Ellipsoid Method, and Karmarkar, Affine, Path-Following and Interior Point Method which have Polynomial-Time complexity. In this study, Karmarkar Method is more quickly solved as 50 times then Simplex Method for optimal solution. but some special problem is not solved by Karmarkar Method. As a result, the algorithm by APL Language is proved time efficiency and optimal solution in the Primal-Dual interior point algorithm. Furthermore Karmarkar Method and Primal-Dual interior point Method is compared in some examples.

  • PDF

내부점 선형계획법의 쌍대문제 전환에 대하여 (On dual transformation in the interior point method of linear programming)

  • 설동렬;박순달;정호원
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1996년도 추계학술대회발표논문집; 고려대학교, 서울; 26 Oct. 1996
    • /
    • pp.289-292
    • /
    • 1996
  • In Cholesky factorization of the interior point method, dense columns of A matrix make dense Cholesky factor L regardless of sparsity of A matrix. We introduce a method to transform a primal problem to a dual problem in order to preserve the sparsity.

  • PDF

ON COMPLEXITY ANALYSIS OF THE PRIMAL-DUAL INTERIOR-POINT METHOD FOR SECOND-ORDER CONE OPTIMIZATION PROBLEM

  • Choi, Bo-Kyung;Lee, Gue-Myung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제14권2호
    • /
    • pp.93-111
    • /
    • 2010
  • The purpose of this paper is to obtain new complexity results for a second-order cone optimization (SOCO) problem. We define a proximity function for the SOCO by a kernel function. Furthermore we formulate an algorithm for a large-update primal-dual interior-point method (IPM) for the SOCO by using the proximity function and give its complexity analysis, and then we show that the new worst-case iteration bound for the IPM is $O(q\sqrt{N}(logN)^{\frac{q+1}{q}}log{\frac{N}{\epsilon})$, where $q{\geqq}1$.

일반한계 선형계획법에서의 원내부점-쌍대단체법과 쌍대내부점-원단체법 (Primal-Interior Dual-Simplex Method and Dual-Interior Primal-Simplex Method In the General bounded Linear Programming)

  • 임성묵;김우제;박순달
    • 한국경영과학회지
    • /
    • 제24권1호
    • /
    • pp.27-38
    • /
    • 1999
  • In this paper, Primal-Interior Dual-Simplex method(PIDS) and Dual-Interior Primal-Simplex method(DIPS) are developed for the general bounded linear programming. Two methods were implemented and compared with other pricing techniques for the Netlib. linear programming problems. For the PIDS, it shows superior performance to both most nagative rule and dual steepest-edge method since it practically reduces degenerate iterations and has property to reduce the problem. For the DIPS, pt requires less iterations and computational time than least reduced cost method. but it shows inferior performance to the dynamic primal steepest-edge method.

  • PDF

Auction 알고리즘을 이용한 최단경로에 관한 연구 (A Study on the Shortest path of use Auction Algorithm)

  • 우경환
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1998년도 The Korea Society for Simulation 98 춘계학술대회 논문집
    • /
    • pp.11-16
    • /
    • 1998
  • The classical algorithm for solving liner network flow problems are primal cost improvement method, including simplex method, which iteratively improve the primal cost by moving flow around simple cycles, which iteratively improve the dual cost by changing the prices of a subset of nodes by equal amounts. Typical iteration/shortest path algorithm is used to improve flow problem of liner network structure. In this paper we stdudied about the implemental method of shortest path which is a practical computational aspects. This method can minimize the best neighbor node and also implement the typical iteration which is $\varepsilon$-CS satisfaction using the auction algorithm of linear network flow problem

  • PDF

최소비용문제의 해법 효율화와 통합구현 (Performance Improvement and Integrated Implementation for Minimum Cost Flow Problem)

  • 정호연
    • 산업경영시스템학회지
    • /
    • 제20권43호
    • /
    • pp.67-79
    • /
    • 1997
  • In this paper we develop the integrated software that can compare algorithms of the minimum cost flow problem using PC. The chosen algorithms are the network simplex method, dual network simplex method, and out-of-kilter method, which methods correspond to primal, dual, and primal-dual approach respectively. We also present the improved methods obtaining the initial solution to increase the efficiency of algorithms, and experiment results shown the difference between the entering(dropping) selection rules.

  • PDF

내부해로부터 최적기저 추출에 관한 연구

  • 박찬규;박순달
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.24-29
    • /
    • 1996
  • If the LP problem doesn't have the optimal soultion uniquely, the solution fo the primal-dual barrier method converges to the interior point of the optimal face. Therefore, when the optimal vertex solution or the optimal basis is required, we have to perform the additional procedure to recover the optimal basis from the final solution of the interior point method. In this paper the exisiting methods for recovering the optimal basis or identifying the optimal solutions are analyzed and the new methods are suggested. This paper treats the two optimal basis recovery methods. One uses the purification scheme and the simplex method, the other uses the optimal face solutions. In the method using the purification procedure and the simplex method, the basic feasible solution is obtained from the given interior solution and then simplex method is performed for recovering the optimal basis. In the method using the optimal face solutions, the optimal basis in the primal-dual barrier method is constructed by intergrating the optimal solution identification technique and the optimal basis extracting method from the primal-optimal soltion and the dual-optimal solution.

  • PDF

NEW PRIMAL-DUAL INTERIOR POINT METHODS FOR P*(κ) LINEAR COMPLEMENTARITY PROBLEMS

  • Cho, Gyeong-Mi;Kim, Min-Kyung
    • 대한수학회논문집
    • /
    • 제25권4호
    • /
    • pp.655-669
    • /
    • 2010
  • In this paper we propose new primal-dual interior point methods (IPMs) for $P_*(\kappa)$ linear complementarity problems (LCPs) and analyze the iteration complexity of the algorithm. New search directions and proximity measures are defined based on a class of kernel functions, $\psi(t)=\frac{t^2-1}{2}-{\int}^t_1e{^{q(\frac{1}{\xi}-1)}d{\xi}$, $q\;{\geq}\;1$. If a strictly feasible starting point is available and the parameter $q\;=\;\log\;\(1+a{\sqrt{\frac{2{\tau}+2{\sqrt{2n{\tau}}+{\theta}n}}{1-{\theta}}\)$, where $a\;=\;1\;+\;\frac{1}{\sqrt{1+2{\kappa}}}$, then new large-update primal-dual interior point algorithms have $O((1\;+\;2{\kappa})\sqrt{n}log\;n\;log\;{\frac{n}{\varepsilon}})$ iteration complexity which is the best known result for this method. For small-update methods, we have $O((1\;+\;2{\kappa})q{\sqrt{qn}}log\;{\frac{n}{\varepsilon}})$ iteration complexity.