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A Study on Primal-Dual Interior-Point Method

Seung-Won Ant

Abstract : The Primal-Dual Interior-Point (PDIP) method is currently one of the fastest
emerging topics in optimization. This method has become an effective solution

theoretical developments of the PDIP method as well as practical issues related to
inequality constraints
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Optimization models try to represent. in

mathematical form, the objective of solving

a problem in the best way
defined as

on-line generating units such that total
. That can be
the process

mean designing a ship to minimize weight
business to maximize profit
loss,

generation cost is minimized?. It might
or maximize cargo space
of running a

Optimization models arise in almost
every area of application since the desire
minimize
maximize efficiency, or minimize
risk. It can be the process of providing the
required electric power and line losses by

to solve a problem in an optimal way is so
allocating generation among a set of

common. In recent years, they have become
more essential as businesses become larger
AYPAAHL

and more complicated, and as engineering
designs become more challenging
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Remarkable advances in computer

hardware and software have been
achieved for the last few decades, and
these improvements have made optimiza

-tion models a practical tool in various

applications.
Linear programming has dominated
paradigm in optimization since its

formulation in the 1930s and 1940s and
the development of the simplex algorithm
by Dantzig in the mid 1940s™. The simplex
method is the most widely used method for
linear programming and one of the most
widely used of all numerical algorithms. It
with the

interior-point methods

is only in recent vyears
development of
that the simplex method has had a serious
challenge for dominance in linear
programming. A general feature common
to the interior-point methods is that each
Thus, in

contrast to the simplex algorithm where

iteration is strictly feasible.
the movement is along the boundary of the
feasible region, the points generated by
these new approaches lie in the interior of

the feasible regionm. The interior-point
methods are much faster than the simplex
linear programs. A

method on large

thorough theoretical understanding of
these methods has emerged for the last
two decades, and the theory has been
extended to other nonlinear optimization
problems.

This tutorial introduces the Primal-Dual
Interior-Point (PDIP)method. which has
been recognized as the best available
algorithm for non-linear optimization
programs. It describes major theoretical
developments of the PDIP method based
on the function

logarithmic barrier

ofy
o

deals with
Updating the
barrier parameter associated with the

method,
inequality

which mainly
constraints.

central path is also discussed for practical
issues related to implementation of the
PDIP method.

2. NEWTON'S METHOD

Newton’s method has been the standard
solution algorithm to solve for optimiza
-tion problems with various equality and
inequality constraints for several decades
W8 Newton's method is a very powerful
algorithm because of its rapid convergence
This

especially beneficial for power system

near the solution. property is
applications because an initial guess close
to the solution is easily obtained™. For
example, voltage magni ~tude at each bus
is presumably near the rated system
value, generator outputs can be estimated
from historical data, and transformer tap
ratios are near 1.0 p.u. during steady-
state operation.

The of the

optimization problem requires the mathema

solution constrained

-tical formation of the Lagrangian by

oY, 4, )= C(¥)+ 2 A+ e r) ()

ie A
where A; is the Lagrange multiplier for
the " equality constraint. Assuming that
we know which inequality constraints are

binding, and have put them in the set A,
then the inequality constraints can now be
enforced as equality constraints. Thus the

u;s in (1) have the same property as A;s
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and they are the Lagrange multipliers for

binding inequality constraints. However,

'? We can ignore

we need p,;=0 for every ¢
the inequality constraints that are not

binding since their ¢'s are known to be

Zero by  complementary slackness
condition?. That is
gr)<0 = g=0,
gi(Y)::O = 420
Therefore, only binding inequality

consfraints are included in the Lagrangian
function (1) with corresponding nonzero
#'s.

Solution of a constrained optimization
problem can be solved by adjusting control
and state variables, and Lagrange multip
-liers to satisfy the following first-order

necessary optimality conditions:

oL

n oo,
.
3y PL_p-o,
o4, (2)
) Log<o,
ou,

4) g, 20and y,g, =0.

The above equations are also called the
Karush-Kuhn-Tucker (KKT) conditions.
Let us define

axz)=vz£(z)=[i€ o aﬁ}o @

oY oL ou,

where z is a vector of 7 2* ul]. and

A represents the binding inequality
constraints.
To solve the KKT conditions, Newton's

method is applied by using the Taylor's

Ho) e AT 19

series expansion around a current point

o6)-06 ) 28 6-2)
-y 6203(21_2” ez Yerem

HoOT

P

The current point Z” can either be an
initial guess in the first iteration of the
computation, or the estimate solution from
the prior iteration. Recall that we want
w(z)=0. By ignoring the high order terms
(H.O.T) and defining Az=z-z"  the

above equation can be rewritten as:

‘Az = ~(0(Z”) (4)

The quantity Az is the update vector. or
the Newton step, and it tells how far and
in which direction the variables and
multipliers should move from this current
to get closer to the solution.
of the

point z?

Since w(z) is the gradient

Lagrangian function (z) equation (4) can

be written in terms of the Lagrangian

function £(z) as:

V.ViL(e) Az =9 £(z) (5)
Or, simply

WAz =-alz) 6)
where W denotes the second order

derivatives (or the Hessian matrix) and
@ ig the gradient, both of the Lagrangian

function with respect to 2z evaluated at
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the current point. Equation (6) can be
written in matrix form as

H, J A"| AY VL
J 0 0] ALl |{=-V,L (7)
4 0 0 Ay, vV, L
where the Hessian matrix H, and

Jacobian matrices J and 4 are given as

follows:
2
Hy = 66?’(22)’
_2c(z) _anly
T ey or
aZL(Z) _ ag,z(Y)
du,0Y oY

where €4 is a set of binding inequality
constraints. The Newton step can be
obtained by solving (6). Then a vector of
estimated solution for the next iteration is
updated as:

P = 2P v aAz (8)

where @ is usually 1, but can be adjusted
to values above or below 1 to speed up
convergence or cause convergence in a
divergent case. It is important that special
paid to the

attention be inequality

constraints. Equation (1) only includes
binding inequality constraints being
enforced as equality constraints. Thus,

after obtaining an updated set of variables
and multipliers, a new set of binding
inequality constraints (or what we think
is the active set) should be determined as
follows (4):

- If the updated u's of the constraint

ofy
o

functions in the current active set are

zero or have become negative, then the

corresponding constraints must be
released from the current active set
because #,<0 implies that g;= 0 keeps
the trial solution at the edge of the
feasible region instead of allowing the
trial solution to move into the interior
of the feasible region.

- If other constraint functions evaluated
at the updated variables violate their
limits, then those constraints must be
included in the new active set. The
variable € may be chosen to prevent
constraint violations, but «<{1 to avoid
infeasibility implies that the constraint
would otherwise be violated.

As a result, if g, is positive, continued

enforcement will result in an improvement
of the objective function, and enforcement
is maintained. If u; 1is negative, then
enforcement will result in an decrease of
the objective function, and enforcement is
stopped.

Once the active set has been updated,
w(2”*') is checked for convergence. There
are several criteria for checking convergence
method. The

tolerance may be set on the maximum

of Newton’'s convergent

absolute value of elements in w(z), or on

its norm. If the updated 2’"! does not
satisfy the desired convergence criterion,
the Newton step calculation is repeated.

3. PRIMAL-DUAL INTERIOR POINT
METHOD

One of Newton's

method is to identify a set of binding

of disadvantasges
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inequality constraints, or active cons-
traints. Among several methods to avoid
the difficulty associated with guessing the
correct active set, the PDIP method has
been acknowledged as one of the most

(4], (7). (8].
methods for optimization have been widely

successful Interior point
known since the publication of Karmarkar’s
seminal paper in 1984 (9]). Barrier function
methods were proposed much earlier in
little

because the algorithm was so

Russia but attention was paid
slowin
implementation. Later, this method was
shown to be equivalent to the interior
method

ill-conditioning

point methods. Karmarkar's

results in numerical
although this problem is not so bad with

the PDIP method.

Infeasible A Feasible
Region <= | = Region log(-g)

> g

Fig. 1 Effect of barier term

The method uses a barrier function that
1s continuous in the interior of the feasible
set, and becomes unbounded as the
boundary of the set is approached from its
interior. Two examples of such a function
(1], (3) are the logarithmic function, as

shown in Fig. 1
#r)=-2 In-g,(r) (9)

and the inverse of the inequality function

(805)

¢(Y):Zm:_ T(Y) (10)

The barrier method generates a sequence
of strictly feasible iterates that converge
to a solution of the problem from the
interior of the feasible region (1], (3).

To apply the primal-dual interior point
algorithm to the OPF problem that has
equality and inequality constraints, we
construct the nonlinear equality and

inequality-constrained optimization problem

as
min f(Y) (11)
subject to
h(r)=0, i=1,-n,
g.(r)<o, i=lym

To solve the problem, we first form the
logarithmic barrier function as

m

B=fr)-v) in(-g(r) (12

i=1

where the parameter v 1is referred to

as the barrier parameter., a positive
number that is reduced to approach to
zero as the algorithm converges to the
optimum. Then we solve a sequence of
constrained minimization problems of the

form
min B(¥,4,v) (13)

subject to
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for a sequence { v,} of positive barrier
parameters that decrease monotonically to
zero. The solution of this problem by
Newton’'s method requires the formulation

of the Lagrangian function

+ iﬂihi(Y)— viln(—— g(r) 4

Because the barrier term is infinite on
the boundary of the feasible region, as
shown in Fig. 1, it acts as a repelling force
that drives the current trial solution away
from the boundary into the interior of the
feasible region. As the barrier parameter
V is decreased, the effect of the barrier
term is diminished, so that the iterates
can gradually approach the constraint
boundaries of the feasible region for those
constraints which eventually turn out to
be binding.

To solve equation (13), we need to find

the gradient of £ with respect to Y

S 1
h V.g.
VyL= Vyf ;ﬂv Z g,(Y) Ygx(Y)
=v,£(¥) z,w n(y +vilvyg,
N (15)
‘Vyf ZAV h )+Zﬂivygi(Y)
i=l
=Vyf( )+hyzl+g},,u,
where
—gi(Y)zs,, i=1,,m,
HS; =V, i=1,-m

k% is a matrix consisting of the gradient

V,h(¥) as columns, and g% is a matrix

4

consisting of the gradient Vr&() as
columns, or
hYT = [Vth(Y) Vyhz(Y)
8y = [VYg1(Y) Vygz(Y)

v,k (1Y),

Vng(Y)] .

Also, A

elements 4,, and ¢ is a vector containing

is a vector containing the

the elements x, The set of equations we

must solve is

VYf"'iﬂ'thi +i/‘ngi =0,
i=1 i=1

#(¥)=0, i=lyn

g \Y)+s, =0, i=l,.-,m
) 4 (16)

s —v =0, i=1,--,m

s; >0, i=1,-m

>0, i=1,-ym.

These equations can be solved using the
Newton iterative method. Our four sets of
variables for which we must solve are Y,
A, #, and s. The equation for a first order
approximation of a Taylor series of a
function, F, whose independent variables
are Y, A, zand sis
oF oF

F(Y,,A,,1,,5 )+57AY+—A1

F(Y,l,y,s); Y]

+_/1A#+-6_AS' 17

We want to find the values of Y, A,
and s where the expressions on the left
side of the equations we want to solve
evaluate to zero. We use Newton-Raphson
to do so.

Taking the first order approximation to
the Taylor series for each of the four
expressions given in (16) and setting them
equal to zero (the desired value for each)
give us
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(Vy f+H A+ ghu)+(V3f + D AV3h

i=1

+i,uin,gi)AY+h;M +glAu=0,
P (18)

h+h,AY =0,

(g+s)+g,AY +IAs =0,

(MSe—ve)+ SAu+MAs =0,

where

I : an identity matrix,

S : a diagonal matrix constructed from
<51 L So, ,Sm),

M ' a diag. matrix constructed from
(g oy, ).

e ' a column vector with all elements 1.

The above equations can be organized in

matrix form as

Hy h g 0[AY] |-V, f-hji-gu
h, 0 0 0 AA|_ —h
g 0 0 [I|Au -g-s
0 0 S M|As ve — MSe
or

WAz = AF
where

H,=Vif+ Z’livihi + Zﬂivf’gi
i=1 i=1 .

We initially set V to some relatively
large number, such as 10. Starting with

an initial guess

we calculate the W matrix and the AF

vector. If all the elements of AF are

sufficiently close to zero, we have found
the solution % . Otherwise we must solve
for Az by

Az=W'AF (19)

INITIAL VALUE (Z0)

v-0 < Z{v=0)

Fig. 2 Graphical representation of central path
Then the original Z is updated by

Az=W'AF (20)

However, following conditions need to be

satisfied when updating 2 :

#; >0,

5;>0

Therefore, when calculating the updated
# and S, we must make sure that each g;
and each S, is still strictly greater than
zero when A% and AS: are added to it.
respectively. If adding A4 or As; violates
this condition, all A# and all As; must be

scaled by some factor a less than one

before adding them as in (20).

Now that we have a new guess for z,
the W matrix and AF vector are calculated
again. If the elements of the AF vector are
sufficiently close to zero, we have found

(807)
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the Z which solves our problem. Otherwise
we solve for Az and update Z again. This
process is repeated until we find the 2
which makes AF very close to zero. After
we solve for 2, we reduce the barrier

parameter V by some factor K. For

example, if K =04  the barrier parameter
V is updated by letting the new v be 0.4
times the old v . Using the value of Z
obtained using the old V as an initial
guess Z,, we use the iterative procedure
described above to solve for the value of 2
which makes AF approximately zero for
the new barrier parameter. The process of
solving for Z 6 decreasing V, and then
solving for Z again is repeated until V
becomes a very small number, such as
10-10. This process is illustrated in Fig. 2.
When V gets this small, we have found
the Z that solves our problem. When
solving for Z given a particular V | it is
not necessary to force AF to be zero. What
we really want to know is how close we are
to the central path. The central path is
defined by a sequence of {Y("hA()u(v)s()}
which make AF evaluate to zero for every
possible value of V . One way of measuring
how close we are to the central path is by
checking to see how close each product
H;8; is to the barrier parameter V. One
proposed way of doing this is by first
calculating the average value of #5;, also
known as the duality factor (3], by

m

D= E HiSi
- m
i=1 s

which evaluates to zero when each

product 4% is equal to V. Instead of

checking to see if AF ig sufficiently close
to zero, we check to
following is true:

see when the

Hys, =V
Sy =V
H,s, <tv
umsm _V 2
where
O<zr<l.

When this logical statement becomes

true, we are sufficiently close to the

central path, and we can reduce V.

4. IMPLEMENTATION

Consider a guadratic objective function
with
constraints :

linear equality and inequality

min f(x,y): yr—dxy—x?+8y+14x
X,y

subject to:

h:—?—y+3=0,
g =5x-y-12<0,
g, =x-y<0

Note that in solving for X, ¥, 4, and 4 it
is necessary to know (or assume) which
constraints are active. Of course, this is
usually not the case. But we can proceed
by trial and error to find a candidate
solution where the KKT conditions are all
satisfied. Since we have two inequality
2 =4 possible

constraints, there are

solutions. Suppose that inequality const

-raint 81 is only active, and the associated
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multiplier is defined by # . We ignore
inequality constraint 8: since we assume
that it is not binding. The Lagrangian is
then

L(x,y,/l,yl)z(yz —dxy—x’ +8y+14x)

+i(—§—y+3]+,ul(5x—y—12).

The first-order necessary optimality
conditions become

0=V L=(-2x—4y+14)-022+5u,
0=V, £=(-4x+2y+8)-1-p,
0=V1L=h=—§—y+3,

0=V, L=g=5x-y-12

Collecting these terms into
ratrix-vector form, we obtain

-2 -4 :-02 : 5] =x] [-14]
-4 2 -1 -1y -8
02 -1 : 0 :ofalf-3
L 5 -1t 0 O_M_ L124

which gives

(x| [2.8846]
y| | 24231
217109763
| ] [03314]

Since the above solution does not satisfy
inequality constraint &2, it is not a
feasible solution. In a similar way, we can
verify other cases, which are summarized
in the following table.

2o Be 97 1%
bin(ilng? biniilg? x|yt |/t | KKT
No No 25| 35| 34 | Yes
Yes No |2.89|2.42 No
No Yes 25 | 25 | 30 | Yes
Yes Yes 0 0 No

So two of the possible solutions satisfy
the KKT conditions. The optimal solution
is obtained with *=2.5 and ¥=2.5 when
&> is only binding. This problem can be
also solved by using the PDIP method. A
Matlab code PDIP
method for this problem can be provided

implementing the

upon a reader’s request.

5. CONCLUSIONS

Despite several attractive features of
the PDIP method. it has an inherent
disadvantage that the size of problem is
much bigger than the Newton active set
method since the PDIP method includes
all inequality constraints. This problem
becomes even more involved when we
consider large scale problems, such as the
electric optimal power flow (OPF) and
natural gas electricity OPF (4], (10}, (11].
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