• Title/Summary/Keyword: prestressing levels

Search Result 18, Processing Time 0.017 seconds

Flexural performance of prestressed UHPC beams with different prestressing degrees and levels

  • Zongcai Deng;Qian Li;Rabin Tuladhar;Feng Shi
    • Computers and Concrete
    • /
    • v.34 no.4
    • /
    • pp.379-391
    • /
    • 2024
  • The ultra-high performance concrete (UHPC) mixed with hybrid fibers has excellent mechanical properties and durability, and the hybrid fibers have a certain impact on the bearing capacity, deformation capacity, and crack propagation of beams. Many scholars have conducted a series of studies on the bending performance of prestressed UHPC beams, but there are few studies on prestressed UHPC beams mixed with hybrid fibers. In this study, five bonded post-tensioned partially prestressed UHPC beams mixed with steel fibers and macro-polyolefin fibers were poured and subjected to four-points symmetric loading bending tests. The effects of different prestressing degrees and prestressing levels on the load-deflection curves, crack propagation, failure modes and ultimate bearing capacity of beams were discussed. The results showed that flexural failure occurred in the prestressed UHPC beams with hybrid fibers, and the integrity of specimens was good. When the prestressing degree was the same, the higher the prestressing level, the better the crack resistance capacity of UHPC beams; When the prestressing level was 90%, increasing the prestressing degree was beneficial to improve the crack resistance and ultimate bearing capacity of UHPC beams. When the prestressing degree increased from 0.41 to 0.59, the cracking load and ultimate load increased by 66.0% and 41.4%, respectively, but the ductility decreased by 61.2%. Based on the plane section assumption and considering the bridging effect of short fibers, the cracking moment and ultimate bearing moment were calculated, with good agreement between the test and calculated values.

The effect of active and passive confining pressure on compressive behavior of STCC and CFST

  • Nematzadeh, Mahdi;Fazli, Saeed
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.161-171
    • /
    • 2020
  • In this paper, an experimental study was conducted on the compressive behavior of steel tube confined concrete (STCC) and concrete-filled steel tube (CFST) columns with active and passive confinement. To create active confinement in the STCC and CFST specimens, an innovative method was used in this study, in which by applying pressure on the fresh concrete, the steel tube was laterally pretensioned and the concrete core was compressed simultaneously. Of the benefits of this technique are improving the composite column behavior, without the use of additives and without the need for vibration, and achieving high prestressing levels. To achieve lower and higher prestressing levels, short and long term pressures were applied to the specimens, respectively. Nineteen STCC and CFST specimens in three groups of passive, short-term active, and long-term active confinement were subjected to axial compression, and their mechanical properties including the compressive strength, modulus of elasticity and axial strain were evaluated. The results showed that the proposed method of prestressing the STCC columns led to a significant increase in the compressive strength (about 60%), initial modulus of elasticity (about 130%) as well as a significant reduction in the axial strain (about 45%). In the CFST columns, the prestressing led to a considerable increase in the compressive strength, a small effect on the initial and secant modulus of elasticity and an increase in the axial strain (about 55%). Moreover, increased prestressing levels negligibly affected the compressive strength of STCCs and CFSTs but slightly increased the elastic modulus of STCCs and significantly decreased that of CFSTs.

Nonlinear earthquake capacity of slender old masonry structures prestressed with steel, FRP and NiTi SMA tendons

  • Preciado, Adolfo;Ramirez-Gaytan, Alejandro;Gutierrez, Nayar;Vargas, David;Falcon, Jose Manuel;Ochoa, Gil
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.213-226
    • /
    • 2018
  • This paper focuses on the seismic protection of slender old masonry structures by the implementation of prestressing devices at key locations. The devices are vertically and externally located inside the towers in order to be reversible and calibrated. An extensive parametric study on a selected slender tower is carried out based on more than 100 nonlinear static simulations aimed at investigating the impact of different parameters on the seismic performance: (i) different prestressing levels; (ii) shape memory alloy superelasticity and (iii) changes in prestressing-forces in all the stages of the analysis until failure and masonry toe crushing. The tendon materials under analysis are conventional prestressing steel, fiber-reinforced polymers of different fibers and shape memory alloys. The parametric study serves to select the most suitable prestressing device and optimal prestressing level able to dissipate more earthquake energy. The seismic energy dissipation is evaluated by comparing the structural capacity curves in original state and retrofitted.

Experimental study and calculation of laterally-prestressed confined concrete columns

  • Nematzadeh, Mahdi;Fazli, Saeed;Hajirasouliha, Iman
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.517-527
    • /
    • 2017
  • In this paper, the effect of active confinement on the compressive behaviour of circular steel tube-confined concrete (STCC) and concrete-filled steel tube (CFST) columns is investigated. In STCC columns the axial load is only applied to the concrete core, while in CFST columns the load is carried by the whole composite section. A new method is introduced to apply confining pressure on fresh concrete by laterally prestressing steel tubes. In order to achieve different prestressing levels, short-term and long-term pressures are applied to the fresh concrete. Three groups of STCC and CFST specimens (passive, S-active and L-active groups) are tested under axial loads. The results including stress-strain relationships of composite column components, secant modulus of elasticity, and volumetric strain are presented and discussed. Based on the elastic-plastic theory, the behaviour of the steel tube is also analyzed during elastic, yielding, and strain hardening stages. The results show that using the proposed prestressing method can considerably improve the compressive behaviour of both STCC and CFST specimens, while increasing the prestressing level has insignificant effects. By applying prestressing, the linear range in the stress-strain curve of STCC specimens increases by almost twice as much, while the improvement is negligible in CFST specimens.

Time dependent service load behaviour of prestressed composite tee beams

  • Uy, Brian
    • Structural Engineering and Mechanics
    • /
    • v.5 no.3
    • /
    • pp.307-327
    • /
    • 1997
  • This paper is concerned with the time dependent service load behaviour of prestressed composite tee beams. The effects of creep and shrinkage of the concrete slab are modelled using the age adjusted effective modulus method and a relaxation approach. The tendon strain is determined considering compatibility of deformations and equilibrium of forces between the tendon and the composite tee beam. A parametric study is undertaken to study the influence of various aspects on the stress, strain and deformations of the concrete slab, steel beam and prestressing tendon. The effect of loading type and tendon relaxation has also been considered for various types of prestressing tendon materials. Recommendations are then made in relation to adequate span to depth ratios for varying levels of prestressing force.

Strength of prestressed concrete beams in torsion

  • Karayannis, Chris G.;Chalioris, Constantin E.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.2
    • /
    • pp.165-180
    • /
    • 2000
  • An analytical model with tension softening for the prediction of the capacity of prestressed concrete beams under pure torsion and under torsion combined with shear and flexure is introduced. The proposed approach employs bilinear stress-strain relationship with post cracking tension softening branch for the concrete in tension and special failure criteria for biaxial stress states. Further, for the solution of the governing equations a special numerical scheme is adopted which can be applied to elements with practically any cross-section since it utilizes a numerical mapping. The proposed method is mainly applied to plain prestressed concrete elements, but is also applicable to prestressed concrete beams with light transverse reinforcement. The aim of the present work is twofold; first, the validation of the approach by comparison between experimental results and analytical predictions and second, a parametrical study of the influence of concentric and eccentric prestressing on the torsional capacity of concrete elements and the interaction between torsion and shear for various levels of prestressing. The results of this investigation presented in the form of interaction curves, are compared to experimental results and code provisions.

A Study on Strengthening of Reinforced Concrete Pier Caps Using Prestressed Near Surface Mounted CFRP (프리스트레스가 도입된 표면매립 CFRP를 이용한 교각 두부 보강에 관한 연구)

  • Hong, Sung-Nam;Kim, Tae-Wan;Park, Sun-Kyu;Park, Jong-Sup;Park, Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.595-602
    • /
    • 2007
  • Recently, concrete structures with carbon fiber reinforced polymer (CFRP) reinforcements have been commonly used for the bridge and building construction. In this paper, pier caps were strengthened by prestressed near surface mounted CFRP. To verify the effectiveness of the strengthening method, 7 pier cap specimens were fabricated. One specimen was designed for control, two for external prestressing steel strands, two for CFRP plates, and two for CFRP bars. Experimental variables consist of type of reinforcement materials and prestressing levels. The results of laboratory have shown that the ultimate load capacities of prestressed near surface mounted CFRP specimens were about $20{\sim}33%$ greater than that of a control specimen. Also, ultimate load capacities of prestressed near surface mounted CFRP specimens were similar to those of external prestressing specimens with steel strands.

Permeability of Magnetic Flux of PS Steel for Variation of Stress and Temperature (긴장재의 응력 및 온도변화에 따른 자속투과율)

  • Park, Jin Su;Kim, Byeong Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.323-331
    • /
    • 2022
  • An experimental study was conducted to investigate the effect of applied tensile force and temperature on the permeability of magnetic flux in prestressing steel. The permeability of magnetic flux is the ratio at which the magnetic flux between two points passes. The prestressing steel used in these experiments included a 7-mm PS wire mainly used for cable-stayed bridges and a 12.7-mm PS strand for prestressed concrete bridges. The experiments to extract the permeability of the magnetic flux of steel wire and strand were conducted under various tensile levels and temperature conditions. From the experimental results, it was observed that the permeability of magnetic flux of the PS tension material was linearly proportional to the applied tensile stress level, and inversely proportional to the temperature. If the experimental relationship among the magnetic permeability, temperature, and prestressing ratio of a PS tension material is known in advance, the current tension stress level on PS members can be evaluated by measuring solely the magnetic permeability and temperature.

Evaluation of Flexural Strength Capacity of Large Scale RC Slabs Strengthened with Prestressed CFRP Plate (긴장된 CFRP판으로 보강된 대규모 RC 슬래브의 휨성능 평가)

  • Hong, Ki-Nam;Han, Sang-Hoon;Lee, Byong-Ro;Gwon, Yong-Gil;Woo, Sang-Kyun
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.71-77
    • /
    • 2010
  • This paper presents the results of a study on flexural capacity of large size RC slabs strengthened with carbon fiber reinforced polymer(CFRP) plates. A total of 5 specimens of 6.0m length were tested in four point bending after strengthening them with externally bonded CFRP plates. The CFRP plates were bonded without prestress and with two prestress levels, 0.4% and 0.6% of CFRP plate strain. Test variables included the type of strengthening, prestressing level, and the effects according to each test variables are analysed. The experimental results show that proposed methods can increase significantly the flexural capacity such as strength, stiffness of the beam and the increase ranged between 36.2% and 63.2% of the load-carrying capacity of the control beams. The non-prestressed specimen failed by separation of the plate from the beam due to premature debonding while most of the prestressed specimens failed by CFRP plate fracture. And the cracking loads and maximum loads were increased proportionally to the prestress level.

Compressive behaviour of circular steel tube-confined concrete stub columns with active and passive confinement

  • Nematzadeh, Mahdi;Hajirasouliha, Iman;Haghinejad, Akbar;Naghipour, Morteza
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.323-337
    • /
    • 2017
  • This paper presents the results of a comprehensive experimental investigation on the compressive behaviour of steel tube-confined concrete (STCC) stub columns with active and passive confinement. To create active confinement in STCC columns, an innovative technique is used in which steel tube is laterally pre-tensioned while the concrete core is simultaneously pre-compressed by applying pressure on fresh concrete. A total of 135 STCC specimens with active and passive confinement are tested under axial compression load and their compressive strength, ultimate strain capacity, axial and lateral stress-strain curves and failure mode are evaluated. The test variables include concrete compressive strength, outer diameter to wall thickness ratio of steel tube and prestressing level. It is shown that applying active confinement on STCC specimens can considerably improve their mechanical properties. However, applying higher prestressing levels and keeping the applied pressure for a long time do not considerably affect the mechanical properties of actively confined specimens. Based on the results of this study, new empirical equations are proposed to estimate the axial strength and ultimate strain capacity of STCC stub columns with active and passive confinement.