• Title/Summary/Keyword: prestressed tendon

Search Result 193, Processing Time 0.021 seconds

Design of Additional Tendon Force and Evaluation of Resistant Moment for Prestressed Concrete Composite Section (프리스트레스트 콘크리트 합성단면에 도입되는 추가 긴장력 설계와 저항모멘트 평가)

  • Yon Jung-Heum;Kim Do-Goon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.335-344
    • /
    • 2004
  • A general composite section of precast and cast-in-place concrete with prestressed and nonprestressed reinforcements was analyzed to calculate residual stresses and loss of prestressing force caused by internal constraints of concrete long-term deformation. From the analytical results, equations to design additional prestressing force and to evaluate resistant moment of the composite section were proposed. The equations shows that the additional prestressing force can be over-estimated if the loss rate of the first prestressing force is over-estimated from the lumped sum of a design code. The analytical procedure with the proposed equations has been applied to a composite section using the AASHTO Type 5 girder. The loss rates of the additional prestressing force appling to the precast concrete girder was less than those appling to the composite girder. However, the resistant moment of the additional prestressing force on the composite girder was much larger than that on the precast concrete girder. The additional prestressing force appling to the composite section was very effective for strengthening of the prestressed concrete composite girder.

An Experimental Study on the Precast Segmented PSC Girder with I-Shape and Box-Shape Cross-Section (I형 단면과 BOX형 단면을 갖는 프리캐스트 분절 PSC 거더의 실험적 연구)

  • Kim, Sun-Hee;Lee, Seng-Hoo;Park, Joon-Seok;Cheon, Jinuk;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.8-16
    • /
    • 2015
  • Prestressed concrete (PSC) is a method in which prestressed tendon is placed inside and/or outside the reinforced concrete member and the compressive force applied to the concrete in advance to enhance the engineering properties of concrete member which is weak under tension. In this paper we suggested the precast PSC girder assembled with segments of portable size and weight at the factory. The segments of precast PSC girder will be delivered and assembled as a unit of PSC girder at the site. Consequently, we suggested new-type of precast segmented PSC girder with different shapes of segment cross-section (i.e., I-shape, Box-shape). To mitigate the problems associated with the field splice between the segments of precast PSC girder anchor system is attached near the neutral axis of the girder and relatively uniform compression throughout the girder cross-section is applied. Prior to the experimental investigation, analytical investigation on the structural behavior of precast PSC girder was performed and the serviceability (deflection) and safety (strength) of the girder were confirmed. In addition, 4-point bending test on the girder was conducted to investigate the structural performance under bending. From the experimental investigation, it was found that the precast PSC girder spliced with 3 and 5 segments has sufficient in serviceability and safety conditions and it was also observed that the point where the segments spliced has no defects and the girder behaves as a unit.

Analytical Method of Prestressed Concrete Members with Unbonded Tendons (부착되지 않은 텐돈을 갖는 프리스트레스트 콘크리트부재의 해석)

  • 문정호;이리형
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.75-85
    • /
    • 1995
  • The purpose of the present study is to develop a computer program which can be used to analyze prestressed concrete structures containing either bonded or unbonded tendons. To accomplish this, first, the concrete, nonprestressed, and prestressed steels are modeled with cyclic constitutive laws to take into account the various loading effects. Then, the hybrid-type element method is derived to improve the computations capability of stresses and strains, especially for the unbonded tendon. Since it allows one to determine the cross-sectional deformations in an element without any assumptions for its deformed shape, the element length can be much longer than that of the conventional finite element method. In order to achieve such a long element, various integral schemes are examined to implement them into the program. Then, the computational method for prestressing effects is developed consistently with the analytical method for the structure. Finally, analytical studies for actual tests were carried out to verify the program developed in this study.

  • PDF

An Experimental Study on Bond Characteristics of FRP Reinforcements with Various Surface-type (다양한 표면형상에 따른 FRP 보강재의 부착특성 실험연구)

  • Jung, Woo Tai;Park, Young Hwan;Park, Jong Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.279-286
    • /
    • 2011
  • FRP (Fiber Reinforced Polymer) tendons can be used as an alternative to solve the corrosion problem of steel tendons. Material properties of FRP tendons-bond strength, transfer length, development length-must be determined in order to apply to concrete structures. First of all, in case of application for pretension concrete members with CFRP tendons, transfer length is an important characteristic. The bond of the material characteristics should be demanded clearly to apply to PSC structures prestressed with FRP tendons. This paper investigated on the bond characteristics of FRP reinforcements with various surface-type. To determine the bond characteristics of FRP materials used in place of steel reinforcement or prestressing tendon in concrete, pull-out testing suggested by CAN/CSA S806-02 was performed. A total of 40 specimens were made of concrete cube with steel strands, deformed steel bar and 6 different surface shape FRP materials like carbon or E-glass. Results of the bonding tests presented that each specimen showed various behaviors as the bond stress-slip curve and compared with the bond characteristic of CFRP tendon developed in Korea.

Performance Assessment of Precast Concrete Segmental Bridge Columns with Shear Resistance Connecting Structure (전단저항 연결체를 갖는 프리캐스트 세그먼트 교각의 성능평가)

  • Kim, Tae-Hoon;Kim, Young-Jin;Kim, Seong-Woon;Shin, Hyun-Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.591-601
    • /
    • 2008
  • The purpose of this study was to investigate the performance of precast concrete segmental bridge columns with shear resistance connecting structure. The system can reduce work at a construction site and makes construction periods shorter. A model of precast concrete segmental bridge columns with shear resistance connecting structure was tested under a constant axial load and a cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. An bonded or unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly modified to predict the inelastic behaviors of segmental joints. The proposed numerical method gives a realistic prediction of performance throughout the loading cycles for several test specimens investigated.

A Methodology for Monitoring Prestressed Force of Bridges Using OFS-embedded Strand (광섬유센서가 내장된 강연선을 이용한 교량의 장력 모니터링 방법)

  • Kim, Hyoun-Wo;Kim, Jae-Min;Kim, Jin-Won;Kim, Young-Sang;Yun, Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.133-138
    • /
    • 2008
  • This study proposes a novel method for in-service evaluation of force in an external prestressing 7-wire tendon which is employed for retrofitting bridge superstructure. For this propose, a smart strand 7.0m long whose king wire is replaced by a steel tube and the FBG sensor, is developed. Performance of the strand is demonstrated through loading-unloading tests for a RC T-shaped beam 6.4m long. Finally, a couple of test results are presented to discuss effect of temperature change in the FBG sensor.

  • PDF

FE-model Update for System Identification of PSC Girde (민감도 분석을 통한 프리스트레스 콘크리트 거더의 유한요소모델 개선)

  • Ho, Duc-Duy;Lee, So-Young;Kim, Jeong-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.425-428
    • /
    • 2009
  • This paper presents a sensitivity-based finite element (FE)-model update procedure for prestressed concrete (PSC) girder bridge model using vibration test results. Firstly, the stiffness parameters of the structure such as flexural rigidity of concrete and flexural rigidity of tendon are chosen as updating parameters. Next, the numerical frequencies of first two bending modes are calculated using a three-dimensional FE model which is established for the PSC girder. Then, the corresponding experimental frequencies which are obtained from forced vibration tests are selected. In order to perform the model update, the eigensensitivity-based method is employed. Finally, the effect of prestress-loss on the stiffness parameters is evaluated.

  • PDF

New Rehabilitation Method of Prestressed Concrete Rahmen Bridge with a Hinge at Midspan (프리스트레스트 콘크리트 활절 라멘교의 신보강공법 (상진대교구교적용))

  • 이원표;하성욱;김성호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.979-984
    • /
    • 2001
  • The Sang-Jin bridge constructed by the Free Cantilever Method in 1985 is 4-span concrete rahmen bridge with a hinge at midspan. Due to the effect of creep, shrinkage of concrete and relaxation of tendon, the Sang-Jin bridge exposed the excessive displacement at midspan with the passage of time. In order to improve the load-carrying-capacity and durability of the bridge, needs to repair and rehabilitate the structure emerged. New rehabilitation methods were applied such as external prestressing of concrete box, application of pier pre-camber and steel truss jacking. Structural analysis and several tests including static load test, dynamic load test and ambient vibration test were executed to verify the improvement. The test result showed that the displacement of the midspan was improved by 10mm and it was verified that the stiffness of the bridge was increased. Totally, the load-carrying-capacity of Sang-Jin bridge was increased at least 1.56times which was attributed to the new rehabilitation method.

  • PDF

An Experimental Study to Determine the Effective Prestress force of PSC Beam (PSC 부재의 유효 프리스트레스력 평가를 위한 실험적 연구)

  • Chung, Chul-Hun;Park, Jae-Gyun;Kim, Kwang-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.2
    • /
    • pp.21-29
    • /
    • 2008
  • To evaluate the structural integrity of the NPP containment building more rigorously, the effective prestress, which is one of the most affecting elements, needs to be estimated exactly. This paper presents the results of an experimental study to determine the effective prestress force in prestressed concrete beams. It is possible to improve the effective prestress measuring method by test beam, which is being applied for the investigation of the nuclear power plant in operation. If experimentally evaluated Lift-Off method in this study can be coupled with test beam test currently being used in in-service nuclear power plant, it is possible to measure prestress loss of the tendon and the level of the effective prestress load.

Genetic algorithm optimization of precast hollow core slabs

  • Sgambi, Luca;Gkoumas, Konstantinos;Bontempi, Franco
    • Computers and Concrete
    • /
    • v.13 no.3
    • /
    • pp.389-409
    • /
    • 2014
  • Precast hollow core slabs (HCS) are technically advanced products in the precast concrete industry, widely used in the last years due to their versatility, their multipurpose potential and their low cost. Using three dimensional FEM (Finite Element Method) elements, this study focuses on the stresses induced by the prestressing of steel. In particular the investigation of the spalling crack formation that takes place during prestressing is carried out, since it is important to assure the appropriate necessary margins concerning such stresses. In fact, spalling cracks may spread rapidly towards the web, leading to the detachment of the lower part of the slab. A parametric study takes place, capable of evaluating the influence of the tendon position and of the web width on the spalling stress. Consequently, after an extensive literature review on the topic of soft computing, an optimization of the HCS is performed by means of Genetic Algorithms coupled with 3-D FEM models.