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Analytical Method of Prestressed Concrete Members
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Abstract

The purpose of the present study is to develop a computer program which can be used to analyze
prestressed concrete structures containing either bonded or unbonded tendons. To accomplish this, fir-
st, the concrete, nonprestressed, and prestressed steels are modeled with cyclic constitutive laws to
take into account the various loading effects. Then, the hybrid-type element method is dervied to im-
prove the computational capability of stresses and strains, especially for the unbonded tendon. Since it
allows one to determinei the cross-sectional deformations in an element without any assumptions for its
deformed shape, the element length can be much longer than that of the conventional finite elemenot
method. In order to achieve such a long element, various integral schemes are examined to implement
them into the program. Then, the computational method for prestressing effects is developed consist-
ently with the analytical method for the structure. Finally, analytical studies for actual tests were car-
ried out to verify the program developed in this study.
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1. INTRODUCTION

The application of unbonded tendons to con-
crete has been increasingly demanded for pos-
sibility of economic, simple, fast construction as
well as easy replacement of defective tendons,
Unbonded tendons can also provide an econ-
omic solution for strengthening and repairing
of existing structures. However, the structural

behavior of a member containing unbonded ten-

dons is not yet fully investigated even though
the use of unbonded tendons becomes popular
in engineering profession.

In order to investigate the behavior of the
prestressed concrete member with unbonded
tendons accurately, every critical stage during
the life of structure must be examined. The
stages include: (1) jacking stage; (2) service
load stage; (3) factored load stage. Since the
tendon stress decreases gradually with time,
cracking and load-deflection responses have to
be checked during the jacking stage and the
service load stage. At the factored load stage,
the strength of member should be computed
considering the effects of unbonded tendons.

However, those computations cannot be con-
ducted only by the cross-sectional analysis at a
few critical locations which is typical for the
concrete structures prestressed with bonded
tendons. Most of codified equations for flex-
ural strength computation, however, were
made to consider only critical sections instead
of the global behavior of member. If unbonded
tendons, for example, are provided to a con-
tinuous member, the tendon strains have to be
determined while considering the interaction
between the structural behavior and the con-
tinuous tendons. Currently no code equations
can take into account the effects of continuous
tendons. Experimental data for continuous
members are also so limited that they are not

enough to revise the current code equations.

The focus of this study is to develop an ana-
lytical method for the prestressed concrete
structures containing unbonded tendons. The
research objectives include: (1) the develop-
ment of nonlinear cyclic constitutive laws for
concrete and steels; (2) the development of an
analytical method that gives a better evalu-
ation of unbonded tendon strains; (3) the deri-
vation of a computational method of unbonded
tendon stresses; (4) the analytical studies for
the members containing unbonded tendons. As
a results, a computer program called TAPS
(Time-dependent Analysis for Prestressed con-
crete Structures) has been developed in this
study.

2. NONLINEAR CONSTITUTIVE LAWS

Plain Concrete exhibits a softening behavior
in which its compressive peak connot be main-
tained but it declines with a gradual increase
of displacement. The ultimate load capacity of
statically indeterminate structures is not cor-
rectly predicted without considering the soften-
ing response. A general model for concrete
stress-strain relation also has to include
post-peak and repeated-load behavior at large
load reversals. Karsan and Jirsa' proposed a
constitutive relation for the cyclic behavior of
concrete in compression based on their exper-
imental observations. Their model was modi-
fied in a slightly different way to reduce the
number of internal variables. For the tensile
stress-strain relationship under the cyclic load-
ing, it was assumed that the unloading and rel-
oading stiffness were indentical and the stiff-
ness at zero tensile stress equals to the unload
ing stiffness at the zero compressive stress.
The tension stiffening effect was also modelled
assuming the cracks be smeared out in a con-
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tinuous manner,

The constititive models for reinforcing steel
chosen in this study are the bilinear model, the
power formula model, and the bounding sur-
face model. The stress-strain curve which does
not have a distinct yield point was character-
ized by the power formula of Devalapura and
Tadros.? Cofie and Krawinkler’s bounding sur-
face model® was also selected for a complex
cyclic loading in the inelastic range.

3. MATHEMATICAL FORMULATION

The deformed shape of beam element in con-
ventional fiinite element method is approximat-
ed by interpolation functions such as a cubic
polynomial function for a transverse displac-
ment and a linear function for a longitudinal
displacement. The cubic function implies a lin-
ear variation of curvature along the element,
However, the analysis of prestressed concrete
member with unbonded tendons requires an ac-
curate evaluation of curvature variations since
the compatibility equation should be formul-
ated with the values of concrete strain at the
level of tendon. Thus, a large number of short
elements is necessary for an adequate evalu-
ation of tendon strains. However, the
hybrid-type element method is often used to
improve the computational capability of curvat-
ures. It uses the fact that analytical expres-
sions for the cross sectional forces can be de-
termined from nodal forces applied loads by
the simple statics without being restricted by
either strain displacement relations or material
laws, If the cross sectional forces can be deter-
mined in advance, curvatures and axial def-
ormations can be calculated in a theoretically
exact manner regardless of shape variations of
the element. The analytical expressions for the
cross sectional forces can be considered as in-

terpolation functions of forces rather than dis-
placements, These expressions are exact in-
stead of approximate since no assumptions are
involved. Typical examples of the hybrid-type
element method are found in reference 4, 5, 6.
However, the mathematical formulation used
in this study is more suitable for the analysis
of unbonded tendons.

4. TENDON STRESSES

The design procedure for prestressed con-
crete structures if not as simple as that for
nonprestressed concrete structures due to the
loss of prestressing force. The total loss of
prestressing force is attributed to the follow-
ings: (1) elastic shortening:; (2) friction; (3)
anchorage set. It is essential to include those
effects for a refined analysis of prestressed
concrete structure. If a member is pretension-
ed during construction, the elastic loss can be
considered simultaneously during the compu-
tation. However, additional procedures are req-
uired for post-tensioned concrete structures,
When more than a tendon is stressed in suc-
cession, the elastic loss for an individual ten-
don differs according to its order of the jack-
ing sequence, Although the computation of
such losses can be made in a theoretically ac-
curate manner considering all the tendon prof-
iles, the computed losses may not be necess-
arily accurate, Therefore, an approximate met-
hod is better for simplicity. The elastic loss in
the i tendon due to the tensioning of (i+1)™®

to n' tendons can be approximated by

o o fosiBs,i )
Afpei j§+1—[EA]c,eq (Aps.iErs) (1)
with
[EA]c,eq = E [EA]le /Lc (2)



e A gpe dE

lo
tlo

e o AEHAE 2AE ¥A o] a4

P

in which f; and Ay are the prestressing stres-
s and the area of j* tendon, respectively; Ey is
the young’s modulus of tendon. [EA].; is the

axial stiffness of section at i® integration poin-

t: W, is the weighting factor of the i™® section:

m is the number of section that the tendon pas-
ses; L. is the total length of member.

The relaxation is defined as the stress de-
crease in the tendon with time under a con-
stant strain. The relaxation loss can be estim-
ated accurately if the initial strain is sustained
constantly. However, the strain in the tendon
is altered continuously due to its interaction
with its duct. Hernandez and Gamble” sugges-
ted a method to account for the effects of
changes in tendon strain. The pinciple is to cal-
culate the artificial initial stress at a time t;
with which the relaxation stress is estimated
for the next time period. The artificial initial
stress at the time t; represents the initial stres-
s that would be relaxed to the stress at the cur-
rent time t. the equation for the artificial in-
itial stress f,; is written as

afpi® — foy[140.55a)f; + fs(t)fy, =0 (3)

in which t is the current time period in hour; f;,
is the yield stress; k=10 for stress-relieved
steel; k=45 for low-relaxation steel; a is log
(t-t;) /k.

An analytical model for unbonded members
cannot be developed without considering the
total compatibility requirement that the total
elongation of an unbonded tendon must be
equal to the integrated value of concrete def-
ormations at the level of the tendon, Thus, it
1s critical to compute the correct distribution
of curvatures along the member. The friction
between tendon and its duct develops the stres-
s loss which is independent with time. A wide-

ly accepted equation for the frictional loss is
given as

fi' = £ Xk (4)

where f" is the stress at a point i; f"° is the
stress at k after all the frictional losses occur;
Xix is the frictional coefficient between the
point k and the point i. the unbonded tendon
stress at a point should be determined by con-
sidering all the influences from the other poin-
ts. Since the stress in an unbonded tendon
usually remains below the elastic limit even at
the failure of member, it is poscible to rewrite
Eq. 4 in terms of incremental strain as

Ag" = Ae*™ Xix (5)

If a local deformation in concrete Ag° is gen-
erated only at a point k while all the other
points are underformed, the compatibility
equation can be written as

A&](ch == Agkuo Tk (6)
with
me = (Xigwy Feeeee = Xiw; oo Xy Wa) (7)

in which wy is the weighting factor at the poin-
t k; n is the total number of integration poin-
ts. The weighting factors are used to trans-
form the strain increment to the length in-
crement. For the overall deformation of con-
crete, the strain at a point i is obtained by con-
sidering all the deformations along the tendon
length as

n
A" =3 Ae™ Xik (8)
k=1

By substituting Eq. 6 to Eq. 8, the total
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strain increment at the point i is computed as

2 Aeka

=X —

k=1 Tk

(9

The analytical procedure should be devel-
oped in a unified way regardless of the tendon
types which are bonded or unbonded. Thus,
the same procedure for the bonded member
should be applicable once the strains in the
unbonded tendon are determined. To this end,
Eq. 9 was rewritten as

Ag" = Ag" + Ag™ + Ag™ (10)
with
S Aed w
At =Y = T Xix (1D
k=1 Tk
Aef Wi
Ago = =2 12)
i
n A c
At = 3 2o T Xik (13)
k=itl Tk

where Ag” is the sum of tendon strain incre-
ments which come from the left hand side of
point i; Ag™ is the remaining tendon strain in-
crement due to the deformation at its own lo-
cation 1 after all the frictional losses occur;
Ag" is the sum of tendon strain increments
which come from the right hadn side of the point
i. Since the frictional coefficients n and X are the
function of tendon geometry, they can be pre-
pared at the beginning of computation, The
geometrical changes in tendon profile during
the member deformation were ignored. It has
to be mentioned, however that the elastic beh-
avior of the unbonded tendon is assumed only
for the computation of frictional coefficients.
The strain increment at each point along the
unbonded tendon is obtained by the sum of in-

dividual strain increments from forward and
backward calculations during computation,
Once the strain increment of tendon is obtain-
ed, the remaining procedure is the same as the
case of members with bonded tendons., Thus,
additional procedure for the unbopded member-
s is to compute the tendon strains by the bac-
kward and forward calculations.

5. IMPLEMENTATION

The element length needs not to be short as
in the conventional finite element method, but
they can be long enough to model a member
by one or two long elements. However, the
governing equations for the nonlinear behavior
consist of many integrals that cannot be eval-
uated in a closed form. It is necessary to em-
ploy numerical schemes to evaluate the integ-
rals since the integral kernels are nonlinear fun-
ctions, A significant amount of computing
time is spent during the numerical integration
process for a nonlinear problem. The numerical
integration scheme, therefore, must be as ef-
ficient as possible, especially for the use of
long elements. Furthermore, a suitable method
should be chosen for the computation of trans-
verse and rotational deformations within the
element because the structural analysis gives
only the nodal displacements of the element,

In this study, four types of integration
schemes are used to evaluate various integra-
tions, The integration schemes are rectangular
rule, Simpon’s rule, Gaussian integration rule,
and Lobatto integration rule. However, no in-
tegration method can integrate accurately dis-
continouos functions which are usual in the
nonlinear analysis with long elements. The dis-
continuity cannot be characterized by a single
polynomial equation with a higher order. It is
not a matter of the polynomial order, but a
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matter of the equation numbers used for the
representation of integral kernel. Rather than
increasing the polynomial order, i.e., the inte-
gration points, a better solution can be obtain-
ed by incresing the number of equations, i.e.,
the integration modules. An element may be
divided into a certain number of modules con-
sidering the discontinuities, in which each mod-
ule is represented by an individual polynomial
equation. Each module is evaluated by an indi-
vidual integration scheme,

If a few number of long elements are used to
model a member, it is required to compute
transverse and rotational deformations within

the element. The moment area method and -

the finite difference method may be appropri-
ate tools for solving those deformations. Theor-
etically, the moment area method gives an
exact solution if curvature variations along the
element are estimated correctly. When the fi-
nite difference method is used, only approxi-
mate solutions are obtained. However, the
modulation of integration points allows one to
improve the accuracy. As mentioned pre-
viously, the theoretically exact values of cur-
vature can be evaluated for the given axial for
ce and moment. If the values obtained by the
moment area method are used as the boundary
values for the finite difference method, the er-
rors due to the approximation can be reduced.
Since the Gaussian integration method can
evaluate accurately the deformations at the
end of the integration module, the moment
area method can be combined with the Gaus-
sian integration method. Therefore, the same
distribution of integration points is still used
for this purpose.

Although Newton-Raphson method is a pow-
erful tool for nonlinear analysis, it may fail to
find solution in the neighborhood of a critical
point, With the load incremental approach, it

1s not possible to capture such deformational
characteristics as the yield plateau or the sof-
tening behavior. The stiffness matrix approac-
hes singularity resulting in an increasing num-
ber of iterations even with very small load
steps. The Crisfield’s arc length method is a
famuous technique for the case. However, def-
ormations such as snap-back or snap-through
1s not expected to occur significantly in the
structures of interest in this study. These con-
siderations lead one to conclude that the Rik’s
method,? called the displacement control met-
hod, is more suitable than the arc length met-
hod. At the end of iteration, finally, the cur-
rent variables are stored for the next calcu-
lation while forgetting all the intermediate
steps since concrete is a highly history depen-
dent material.

6. COMPARISON WITH TESTS

6.1 Tao and Du’s beams (TDs)

Tao and Du® tested twenty-six partially pres-
tressed concrete beams with unbonded tendons
that were divided into four groups according
to various parameters. The main objective of
the test program was to investigate the ulti-
mate tendon stress at different levels of re-
inforcement. A group of nine beams were chos-
en in this study (see Table 1). Those beams
were subdivided into three categories in which
each beam in a category was designed for the
unstressed steels to carry about 30, 50, and 70
percent of the total ultimate load. All the test
beams were 6.3 in X 11 in of cross section and
165 in of span.

The comparison of load-deflection curves
and the load-tendon stress increase curves
(TAPS.1) are presented in Fig. 1. The prog-
ram TAPS predicted the load-deflection beh-
avior of the unbonded beams with good agree-
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ments., However, the beams with the medium
level of reinforcing indices (TD.2, TD.5, and
TD.8) were predicted to fail prior to reaching
their maximum test deflections. The beams
with the highest reinforcing indices (TD.3,
TD.6, and TD.9) show that ductile failures did
not occur experimentally and analytically.

When the reinforcing indices were low (TD.1,
TD.4, and TD.7), the load-deflection responses
were predicted well with a sufficiently ductile
mode,

Additionally, all the beams were also anal-
yzed as if they had bonded tendons (TAPS.2)
to investigate the effects of unbonded tendon.
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Fig. 1 Comparison of Tao and Du’s tests (1 kip=4.448 KN, 1 in =25.4mm)

NOTE : TAPS.1=unbonded beam analysis,

TAPS.2=bonded beam analysis
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Table 1. Design Parameters for TDs
e An fee f,
(i) | o)) | ks | P | tksi) |
TD.1 | 4.437 | 0.091 { 130.2 | 0.0038 | 35.72 | 0.0017 | 0.0045 | 0.0913
TD.2 | 4.437 | 0.152 | 131.1 |0.0038 | 62.35 | 0.0028 | 0.0045 | 0.1449
TD.3 | 4.437 | 0.243 | 118.9 | 0.0053 | 62.35 | 0.0045 | 0.0067 | 0.2136
TD.4 | 4.437 | 0.091 | 126.0 {0.0038 | 62.35 | 0.0017 | 0.0045 | 0.1101
TD.5 | 4.437 | 0.122 | 117.5 | 0.0069 | 58.00 | 0.0022 { 0.0088 | 0.1733
TD.6 | 4.437 |0/243 | 123.8 | 0.0100 | 58.00 }0.0045| 0.0131 | 0.2959
TD.7 | 4.437 | 0.06] | 128.3 | 0.0069 | 58.00 |0.0011| 0.0088 | 0.1466
TD.8 | 4.800 | 0.091 | 129.6 0.0100 | 58.00 | 0.0017 { 0.0131 | 0.2037
TD.9 | 4.800 | 0.243 | 133.4 |0.0180 | 58.00 | 0.0045 | 0.0228 | 0.3964

name e e

f fee . .
Note : we=ps—f,L+ppsf—,, 1 in=25.4mm, 1 ksi=6.89 MPa

The beams with the highest reinforcing indi-
ces showed almost identical responses even if
the tendons were assumed bonded. Thus, they
were not included in the figures. Since rela-
tively large amounts of bonded steels were
provided, they acted more like the bonded
beams. The minimum requirement for the bon-
ded steel of ACI Code is 0.002 while actual
amounts supplied were 3 to 9 times greater
than the ACI minimum requirement. For the
others slight increases of strength were pred-
icted while deflections were twice as great as
those of the bonded beams at the same levels
of applied load. But strengths of the bonded
beam analysis never exceeded experimental
strengths, significantly. It was noted that the
strain hardening of the unstressed steels affec-
ted the beam strengths. All the analytical sol-
utions, however, were obtained without con-
sidering the strain hardening because such in-
formation was not available. However, Tao
and Du mentioned in their paper that the
strain hardening affected the beam strengths.

6.2 Cooke, Park, and Yong’s slabs (CPYs)
The 1977 ACI Building Code was considered
to overestimate the unbonded tendon stress at

flexural failure for typical slabs. It has been
pointed out that the span-depth ratio was a
major source of the overestimation. In order to
determine the effect of span-depth ratio, thus,
Cooke, Park, and Yong!® tested twelve prestes
sed concrete one-way slabs among which nine
slabs were post-tensoned with unbonded ten-
dons. The remaining three slabs were designed
to be identical to the unbonded slabs except
that the tendons were bonded. The test prog-
ram was intended to investigate the effect of
the amounts of prestressing steels as well as
the span-depth ratio. However, no bonded un-
stressed steels were provided for the slabs
although they were required by the 1977 ACI
Code. These tests highlighted the effects of
span-depth ratio in the 1983 ACI Code. In this
study, the nine slabs with unbonded tendons
were analyzed and compared with the test res-
ults. The test specimens were divided into
three groups depending on the span-depth rat-
io of 40, 30, and 20. Three slabs in each group
were designed with the prestressing steel indi-
ces of 0.25, 0.125, and 0.0025. The span-depth
ratios were varied with different span lengths
while keeping the slab depth constant as 7.06
in. The prestressing indices were adjusted to
desired values by varying the slab widths. T-
able 2 shows design parameters,

The comparisons of load-deflection behavior
are shown in Fig. 2. It was found that the
load-deflection behavior was sensitive to the
prestressing index experimentally and analyti-
cally. The slabs with medium prestressing
steel indices (CPY.2, CPY.5 and CPY.8)
showed the most ductile behavior., However,
the slabs with the least level of prestressing
indices (CPY.3, CPY.6, and CPY.9) failed sud
denly after one or two large cracks were for-
med. The program TAPS can capture the
phenomenon but the strengths were overestim-
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ated especially for CPY.9. As the span-depth
ratio decreases, the analytical peak strength
tends to be greater than the test strength.
The unbonded tendon is much less efficient
than the bonded tendon in spreading out local-
ly concentrated cracking strains. Since the

prestressing indices were very low, either one
or two cracks might be considered enough to
make the slabs failed at the lower loads than
their theoretical strengths. When the prestres-
sing indices were high as in CPY.1, CPY 4,
and CPY.7, the earlier decrease of strength

15
2
£ 10
E
=
3
= s
< —TEST |
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| .--- TAPS.2
0 I I 1 ] I 1 1 1 1 I 1
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35
30 o
- TD.3 / TD.9
z ) RELS R
/
= 3
[+ 4
s /
3 F/
z ] — TEST |-
3-‘/ ........ TAPS.1
] ------------ & TAPS.2 |
| I | I i ] |

Midspan deflection (in)

Fig. 2 Comparison of Cooke, Park, and Yong's test (1 kip=4.448 KN, 1 in=25.4mm)
NOTE : TAPS.1=unbonded beam analysis, TAPS.2=bonded beam analysis
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Table 2. Design parameters for CPYs

L B e A fee
(in) | (in) | (ksi) | (in®) | (ksi)
CPY.1|181.1| 13.9 | 4.37 | 0.432 | 169 40 | 0.253
CPY.2|181.1| 27.8 | 4.37 | 0.432 ] 166 40 |0.124

name L/d| we

CPY.3|181.1| 46.5 | 4.37 | 0.180 | 174 | 40 | 0.032
CPY.4(133.8] 139 | 499 10432 | 169 | 30 |{0.222
CPY.5[133.8| 27.8 | 499 | 0432 167 | 30 | 0.110
CPY.6|133.8] 46.5 | 4.99 10.180| 177 | 30 |0.029

CPY.7! 86.6 | 13.9 | 4.47 |0.432] 169 | 20 |0.248
CPY.8| 86.6 | 27.8 | 447 10.432| 169 | 20 |0.124
CPY.9| 86.6 | 46.5 | 4.47 | 0180} 175 | 20 | 0.032

was predicted. However, the predicted
load-deflections generally agreed well with the
test results. Up to 80 to 90% of ultimate loads,
the load-deflection responses were found to be

almost identical regardless of tendons either

bonded or unbonded. A slight increase of stren-

gth was expected when the slabs were assum-
ed to have bonded tendons.

6. CONCLUSIONS

1. The hybrid-type element method is not
restricted by the shape variations of an el-
ement. Thus the curvatures and axial deforma-
tions can be computed in a theoretically exact
manner from the cross-sectional forces that
are determined by the structural analysis.

2. Since no assumptions on the deformed
shape are made with the hybrid-type element
method, the element lenght should not be as
short as that of the conventional finite el-
ement method but it may be long enough to
model a member with an element if suitable in-
tegral schemes are provided to cover discontin
uities and end effects in the curvature varia-
tions,

3. It is desirable that the prestressing ef-
fects are taken into account consistently with
the analytical method of structure in such a
way that all the prestressing effects are eval-

uated at the integration points.

4. The compatibility equation for the unbon-
ded tendon is derived from the requirement
that the total elongation of tendon is equal to
the total deformational change of the concrete
at the level of tendon along its length,

5. The strengths of the TDs were predicted
close to the strengths that were computed
with the assumption of bonded tendons, This
was ascribed to the loading condition of two
point loads on short single span and the rela-
tively large amount of bonded steels.

6. The predicted load-deflection and
load-stress increase curves for TDs and CPYs
showed a good agreement with the test data.

7. The studies on TDs and CPYs proved that
the stress in the unbonded tendon at flexural
failure is affected by the ratio of unstressed
bonded steels. The tendon stress at failure dec-
reases as the steel ratio increases,
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