• 제목/요약/키워드: prestressed concrete bridges

Search Result 284, Processing Time 0.023 seconds

A Study on the Applicability of SCP Girder to Continuous Bridges (SCP 합성거더의 연속교 적용에 관한 연구)

  • Kim, Jung Ho;Lee, Sang Yoon;Park, Kyung Hoon;Hwang, Yoon Koog;Yoo, Gun Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.101-111
    • /
    • 2006
  • The SCP girder, which compensates for the shortcomings of conventional girders through the effective composition of concrete, steel, and PS tendon, has recently been developed and applied on real bridges. Developed as a simple-support type, it may be applied on simple-support and continuous bridges by connecting the simple-support SCP girders to the interior supports. A continuous SCP girder, which has structural and cost advantages over the simple-support SCP girder, is proposed in this study. Likewise proposed herein is a new method of constructing a continuous SCP girder, using segments of the girder sequentially. A two-span, half-scale specimen was designed and constructed to verify the propriety of the continuous SCP girder bridge. A static load test was also carried out, using this specimen, to examine the behavior of the continuous SCP girder. Based on the results of the study, it is expected that the continuous bridge that uses the continuous SCP girder can guarantee the structural safety of the simple-support SCP girder.

Static Behavior of the Prestressed Concrete Deck Slab for Steel-Concrete Composite Two-Girder Bridges (강합성 2거더교 PSC 바닥판의 정적 거동)

  • 김영진;주봉철;이정우;김병석;박성용
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.503-512
    • /
    • 2002
  • Generally, the girder spacing of the two-girder composite bridge is from 5m up to 15m. To ensure the structural safety according to Korean Bridge Design Specification, the deck depth should be from 33 cm upto 73 cm. Using the transversal prestressing strands in concrete deck, we can reduce its depth about 10%. However, there is little experience on the design and construction of prestressed concrete(PSC) decks in Korea. This paper focuses on the behaviors of PSC deck. A literature survey is performed widely. Considering the characteristics of the two-girder bridge and the construction conditions in Korea, a cast-in-place PSC deck is recommended for the two-girder bridge with 6m girder spacing. To examine its structural behaviors and safety, three partial model deck specimens(3 m$\times$5 m) with real scale are fabricated md tested. One(PS34-RS) is 34cm depth with the stiffness restraint in longitudinal edges for simulating the real bridge deck. Another(PS34-NS) is same depth without the stiffness restraint, and the other(PS28-NS) is 28cm depth with the stiffness restraint. Under the static patch loading, each specimen had a larger ultimate flexural strength than the design value. Specimens with the stiffness restraint (PS34-RS and PS28-RS) showed the punching shear failure mode and specimen without that(PS34-NS) showed the flexural failure mode.

Numerical analysis for dynamic characteristics of bridge considering next-generation high-speed train

  • Soon T. Oh;Dong J. Lee;Seong T. Yi;Byeong J. Jeong
    • Advances in Computational Design
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • To consider the effects of the increasing speed of next-generation high-speed trains, the existing traffic safety code for railway bridges needs to be improved. This study suggests a numerical method of evaluating the new effects of this increasing speed on railway bridges. A prestressed concrete (PSC) box bridge with a 40 m span length on the Gyeongbu track sector is selected as a representative example of high-speed railway bridges in Korea. Numerical models considering the inertial mass forces of a 38-degree-of-freedom train and the interaction forces with the bridge as well as track irregularities are presented in detail. The vertical deflections and accelerations of the deck are calculated and compared to find the new effects on the bridge arising with increasing speed under simply and continuously supported boundary conditions. The ratios between the static and dynamic responses are calculated as the dynamic amplification factors (DAFs) under different running speeds to evaluate the traffic safety. The maximum deflection and acceleration caused by the running speed are indicated, and regression equations for predicting these quantities based on the speed are also proposed.

Effect of excitation type on dynamic system parameters of a reinforced concrete bridge

  • Wahab, M.M. Abdel;De Roeck, G.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.4
    • /
    • pp.387-400
    • /
    • 1999
  • Damage detection in civil engineering structures using the change in dynamic system parameters has gained a lot of scientific interest during the last decade. By repeating a dynamic test on a structure after a certain time of use, the change in modal parameters can be used to quantify and qualify damages. To be able to use the modal parameters confidentially for damage evaluation, the effect of other parameters such as excitation type, ambient conditions,... should be considered. In this paper, the influence of excitation type on the dynamic system parameters of a highway prestressed concrete bridge is investigated. The bridge, B13, lies between the villages Vilvoorde and Melsbroek and crosses the highway E19 between Brussels and Antwerpen in Belgium. A drop weight and ambient vibration are used to excite the bridge and the response at selected points is recorded. A finite element model is constructed to support and verify the dynamic measurements. It is found that the difference between the natural frequencies measured using impact weight and ambient vibration is in general less than 1%.

Experimental Evaluation of Bi-directionally Unbonded Prestressed Concrete Panel Impact-Resistance Behavior under Impact Loading (충돌하중을 받는 이방향 비부착 프리스트레스트 콘크리트 패널부재의 충돌저항성능에 대한 실험적 거동 평가)

  • Yi, Na-Hyun;Lee, Sang-Won;Lee, Seung-Jae;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.485-496
    • /
    • 2013
  • In recent years, frequent terror or military attacks by explosion or impact accidents have occurred. Examplary case of these attacks were World Trade Center collapse and US Department of Defense Pentagon attack on Sept. 11 of 2001. These attacks of the civil infrastructure have induced numerous casualties and property damage, which raised public concerns and anxiety of potential terrorist attacks. However, a existing design procedure for civil infrastructures do not consider a protective design for extreme loading scenario. Also, the extreme loading researches of prestressed concrete (PSC) member, which widely used for nuclear containment vessel, gas tank, bridges, and tunnel, are insufficient due to experimental limitations of loading characteristics. To protect concrete structures against extreme loading such as explosion and impact with high strain rate, understanding of the effect, characteristic, and propagation mechanism of extreme loadings on structures is needed. Therefore, in this paper, to evaluate the impact resistance capacity and its protective performance of bi-directional unbonded prestressed concrete member, impact tests were carried out on $1400mm{\times}1000mm{\times}300mm$ for reinforced concrete (RC), prestressed concrete without rebar (PS), prestressed concrete with rebar (PSR, general PSC) specimens. According to test site conditions, impact tests were performed with 14 kN impactor with drop height of 10 m, 5 m, 4 m for preliminary tests and 3.5 m for main tests. Also, in this study, the procedure, layout, and measurement system of impact tests were established. The impact resistance capacity was measured using crack patterns, damage rates, measuring value such as displacement, acceleration, and residual structural strength. The results can be used as basic research references for related research areas, which include protective design and impact numerical simulation under impact loading.

Longitudinal Behavior of Prestressed Steel-Box-Girder Bridge (프리스트레스를 도입한 강합성형 교량의 교축방향 거동)

  • Park, Nam Hoi;Kang, Young Jong;Lee, Man Seop;Go, Seok Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.321-329
    • /
    • 2003
  • To effectively use the cross section of concrete decks, analytical and experimental studies on prestressed steel-box-girder bridges were performed in this study. The method of applying prestress was determined in the analytical study and the longitudinal behavior of the prestressed steel-box-girder bridge was considered in the experimental study. The object model for these studies was a two-span continuous bridge. The method of applying prestress determined herein was divided into two parts: one is that apply prestress to the concrete deck at its intermediate support, and the other is that apply prestress to the lower flange of the steel-box-girder bridge at its end support. The prototype bridge for the experiment was simulated based on the rule of similitude and was fabricated according to construction steps to apply prestress effectively. From the results of the experimental study, it has demonstrated that the prestressed steel-box-girder bridge provides better performance than the general steel-box-girder bridge in view of the increase of the design live load, the reduction of the tensile stress of the concrete deck at intermediate support, and the reduction of the displacement.

Uncertainty and Sensitivity Analysis of Time-Dependent Deformation in Prestressed Concrete Box Girder Bridges (프리스트레스트 콘크리트 박스 거더 교량의 시간에 따른 변형의 확률 해석 및 민감도 해석)

  • 오병환;양인환
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.149-159
    • /
    • 1998
  • The reasonable prediction of time-dependent deformation of prestressed concrete(PSC) box girder bridges is very important for accurate construction as well as good serviceability. The long-term behavior is mostly influenced by the probabilistic characteristic of creep and shrinkage. This paper presents a method of statistical analysis and sensitivity analysis of creep and shrinkage effects in PSC box been taken into account - model uncertainty, parameter variation and environmental condition. The statistical and sensitivity analyses are performed by using the numerical simulation of Latin Hypercube sampling. For each sample, the time-dependent structural analysis is performed to produce response data, which are then statistically analyzed. The probabilistic prediction of the confidence limits on long-term effects of creep and shrinkage is then expressed. Three measure are examined to quantify the sensitivity of the outputs of each of the input variables. These are rank correlation coefficient(RCC), partical rank correlation coefficient(PRCC) and standardiozed rank regression coefficient(SRRC) computed on the ranks of the observations. Three creep and shrinkage models - i. e., ACI model. CEB-FIP model and the model in Korea Highway Bridge Specification - are studied. The creep model uncertainy factor and the relative humidity appear to be the most dominant factors with regard to the model output uncertainty.

Flexural Behavior Characteristics of Steel I-Beam Strengthened by the Post-tensioning Method on the Field Experiment (현장실험을 통한 외부 후긴장 Steel I-Beam의 휨 거동 특성)

  • Cho, Doo-Yong;Park, Dae-Yul;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.151-158
    • /
    • 2002
  • Recently, the externally prestressed unbonded steel I-beam bridges have been increasingly built. The mechanical behavior of prestressed steel I-beams which are with external unbonded tendon is different from that of normal bonded PSC beams in a point of that the slip of tendons at deviators and the change of tendon eccentricity occurs, when external loads are applied in external unbonded steel I-beams. The concept of prestressing steel structures has not been widely considered, in spite of long and successful history of prestressing concrete members. In this study, The field experiment on prestressed steel I-beams has been performed in the various aspects of prestressed I-beam including the tend on type and profile.

Construction Monitoring Methods of FCM Bridge Using Temperature Data (온도데이터를 활용한 현장타설 캔틸레버 교량의 시공 중 계측)

  • Kim, Hyun-Joong;Moon, Dae Joong;Nam, Soon Sung;Jeong, Ju Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.219-227
    • /
    • 2016
  • In this study, we have proposed a method of monitoring of bridges under construction in view of the long-term behavior of the prestress concrete bridge of which the Free Cantilever Method is applied. As a method to confirm the ability of the long-term behavior of the concrete box girder, temperature sensors and strain gauges were installed, and the measured data was used to calculate creep coefficient. Moreover, we have measured the stress of the concrete box girder during construction which was applied with creep coefficient and compared with the changes in temperature to analyze the vertical displacement along the segment. In conclusion, monitoring of the FCM bridge during construction in consideration of the long-term behavior can be analyzed efficiently by suing temperature and displacement data without the use of laser displacement meter or laser delfectometer.

Tensile behavior of new 2,200 MPa and 2,400 MPa strands according to various types of mono anchorage

  • Kim, Jin Kook;Seong, Taek Ryong;Jang, Kyung Pil;Kwon, Seung Hee
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.383-399
    • /
    • 2013
  • High-strength strands are widely used as a key structural element in cable-stayed bridges and prestressed concrete structures. Conventional strands for stay cable and tendons in prestressed concrete structures are ${\phi}$15.7mm coated seven-wire strands and ${\phi}15.2mm$ uncoated seven-wire strands, respectively, but the ultimate strengths of both strands are 1860MPa. The objective of this paper is to investigate the tensile behavior of a newly developed ${\phi}15.7mm$ 2,200 MPa coated strand and a ${\phi}15.2mm$ 2,400 MPa uncoated strand according to various types of mono anchorages and to propose appropriate anchorages for both strands. Finite element analyses were initially performed to find how the geometry of the anchor head affects the interaction among the anchor head, the wedge and the strand and to find how it affects the stress distributions in both parts. Tensile tests for the new strands were carried out with seven different types of mono anchorages. The test results were compared to each other and to the results obtained from the tensile tests with a grip condition. From the analysis and the test results, desirable mono anchorages for the new strands are suggested.